GEOMETRIC-THEORY FOR THE SINGULAR ROESSER MODEL

被引:26
|
作者
KARAMANCIOGLU, A
LEWIS, FL
机构
[1] Automation and Robotics Research Institute University of Texas at Arlington, Fort Worth
关键词
D O I
10.1109/9.256336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
(A, E, B)-invariant and (E, A, B)-invariant subspaces for the two-dimensional singular Roesser model are investigated. These subspaces are related to the existence of the solutions when the boundary conditions are in these subspaces. Also existence of a solution sequence in certain subspaces derived from the invariant subspaces is shown. The boundary conditions that appear in the solution when some semistates in the solution are restricted to zero are also investigated.
引用
收藏
页码:801 / 806
页数:6
相关论文
共 50 条
  • [1] GEOMETRIC-THEORY OF TIME-DEPENDENT SINGULAR LAGRANGIANS
    CARINENA, JF
    FERNANDEZNUNEZ, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1993, 41 (06): : 517 - 552
  • [2] GEOMETRIC-THEORY OF CHIRALITY
    SOKOLOV, VI
    JOURNAL OF STRUCTURAL CHEMISTRY, 1985, 26 (04) : 489 - 493
  • [3] A GEOMETRIC-THEORY OF BIFURCATION
    WOLKOWISKY, JH
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 553 - 564
  • [4] A GEOMETRIC-THEORY OF SHELL SINGULARITIES
    KRIELE, M
    LIM, G
    SCOTT, SM
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (11) : 2761 - 2779
  • [5] ON GEOMETRIC-THEORY OF RELATIVISTIC OPTICS
    MIRON, R
    KAWAGUCHI, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1991, 312 (06): : 593 - 598
  • [6] ON THE COVER PROBLEMS OF GEOMETRIC-THEORY
    KARCANIAS, N
    VAFIADIS, D
    KYBERNETIKA, 1993, 29 (06) : 547 - 562
  • [7] GEOMETRIC-THEORY OF HINGED DEVICES
    KOVALEV, MD
    RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1995, 44 (01): : 43 - 68
  • [8] A GEOMETRIC-THEORY FOR DERIVATIVE FEEDBACK
    LEWIS, FL
    SYRMOS, VL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) : 1111 - 1116
  • [9] SEMINAR ON THE GEOMETRIC-THEORY OF FUNCTIONS
    ELIZAROV, AM
    KAZANTSEV, AV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1987, (12): : 77 - 78
  • [10] A GEOMETRIC-THEORY OF MARKOVIAN REPRESENTATION
    RUCKEBUSCH, G
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1980, 16 (03): : 225 - 297