Annular Non-Crossing Matchings

被引:0
|
作者
Drube, Paul [1 ]
Pongtanapaisan, Puttipong [1 ]
机构
[1] Valparaiso Univ, Dept Math & Stat, Valparaiso, IN 46383 USA
关键词
non-crossing matching; combinatorial necklace; Catalan number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the number of distinct non-crossing matchings of n half circles in the half-plane with endpoints on the x-axis equals the nth Catalan number C-n. This paper generalizes that notion of linear non-crossing matchings, as well as the circular non-crossing matchings of Goldbach and Tijdeman, to non-crossings matchings of curves embedded within an annulus. We prove that the number of such matchings vertical bar Ann(n, m)vertical bar with n exterior endpoints and rn interior endpoints correspond to an entirely new, one-parameter generalization of the Catalan numbers with C-n = vertical bar Ann(2n + 1, 1)vertical bar. We also develop bijections between specific classes of annular non-crossing matchings and other combinatorial objects such as binary combinatorial necklaces and planar graphs. Finally, we use Burnside's lemma to obtain an explicit formula for vertical bar Ann(n, m)vertical bar for all integers n, m >= 0.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Non-crossing matchings
    A. A. Vladimirov
    Problems of Information Transmission, 2013, 49 : 54 - 57
  • [2] Non-crossing matchings
    Vladimirov, A. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2013, 49 (01) : 54 - 57
  • [3] Graphs of non-crossing perfect matchings
    Hernando, C
    Furtado, F
    Noy, M
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 517 - 532
  • [4] Graphs of Non-Crossing Perfect Matchings
    C. Hernando
    F. Hurtado
    Marc Noy
    Graphs and Combinatorics, 2002, 18 : 517 - 532
  • [5] Non-crossing matchings of points with geometric objects
    Aloupis, Greg
    Cardinal, Jean
    Collette, Sebastien
    Demaine, Erik D.
    Demaine, Martin L.
    Dulieu, Muriel
    Fabila-Monroy, Ruy
    Hart, Vi
    Hurtado, Ferran
    Langerman, Stefan
    Saumell, Maria
    Seara, Carlos
    Taslakian, Perouz
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (01): : 78 - 92
  • [6] New variants of perfect non-crossing matchings
    Mantas, Ioannis
    Savic, Marko
    Schrezenmaier, Hendrik
    DISCRETE APPLIED MATHEMATICS, 2024, 343 (1-14) : 1 - 14
  • [7] Structural properties of bichromatic non-crossing matchings
    Savic, Marko
    Stojakovic, Milos
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 415
  • [8] Algorithms and Complexity of Strongly Stable Non-crossing Matchings
    Panda, B. S.
    Sachin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 : 363 - 376
  • [9] Point sets with many non-crossing perfect matchings
    Asinowski, Andrei
    Rote, Guenter
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 68 : 7 - 33
  • [10] Faster bottleneck non-crossing matchings of points in convex position
    Savic, Marko
    Stojakovic, Milos
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2017, 65 : 27 - 34