Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications

被引:20
|
作者
Zakhem, Elie [1 ,2 ]
Bitar, Khalil N. [1 ,2 ,3 ]
机构
[1] Wake Forest Sch Med, Wake Forest Inst Regenerat Med, Winston Salem, NC 27101 USA
[2] Wake Forest Sch Med, Dept Mol Med & Translat Sci, Winston Salem, NC 27101 USA
[3] Virginia Tech, Wake Forest Sch Biomed Engn & Sci, Winston Salem, NC 27101 USA
来源
JOURNAL OF FUNCTIONAL BIOMATERIALS | 2015年 / 6卷 / 04期
关键词
chitosan; tubular scaffold; fibers; mechanical properties; freeze/dry; extrusion/gelation;
D O I
10.3390/jfb6040999
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.
引用
收藏
页码:999 / 1011
页数:13
相关论文
共 50 条
  • [31] Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications
    Garakani, Sadaf Saeedi
    Khanmohammadi, Mehdi
    Atoufi, Zhaleh
    Kamrava, Seyed Kamran
    Setayeshmehr, Mohsen
    Alizadeh, Rafieh
    Faghihi, Faezeh
    Bagher, Zohreh
    Davachi, Seyed Mohammad
    Abbaspourrad, Alireza
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 143 : 533 - 545
  • [32] Conductive nanofibrous Chitosan/PEDOT:PSS tissue engineering scaffolds
    Abedi, Ali
    Hasanzadeh, Mahdi
    Tayebi, Lobat
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 237
  • [33] Porous polylactide/chitosan scaffolds for tissue engineering
    Wan, Ying
    Fang, Ya
    Wu, Hua
    Cao, Xiaoying
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 80A (04) : 776 - 789
  • [34] Tissue Engineering;Scaffolds Derived from Chitosan
    Li, Lihua
    Zhou, Changren
    CURRENT ORGANIC CHEMISTRY, 2018, 22 (07) : 708 - 719
  • [35] Chitosan-chitin nanocrystal composite scaffolds for tissue engineering
    Liu, Mingxian
    Zheng, Huanjun
    Chen, Juan
    Li, Shuangli
    Huang, Jianfang
    Zhou, Changren
    CARBOHYDRATE POLYMERS, 2016, 152 : 832 - 840
  • [36] Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering
    Fernandes, Ligia L.
    Resende, Cristiane X.
    Tavares, Debora S.
    Soares, Gloria A.
    Castro, Leticia O.
    Granjeiro, Jose M.
    POLIMEROS-CIENCIA E TECNOLOGIA, 2011, 21 (01): : 1 - 6
  • [37] Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds
    Dutta, P. K.
    Rinki, Kumari
    Dutta, Joydeep
    CHITOSAN FOR BIOMATERIALS II, 2011, 244 : 45 - 79
  • [38] HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications
    Ali, Hafiz U.
    Iqbal, Dure N.
    Iqbal, Munawar
    Ezzine, Safa
    Arshad, Aysha
    Zeeshan, Rabia
    Chaudhry, Aqif A.
    Alshawwa, Samar Z.
    Nazir, Arif
    Khan, Ather F.
    ARABIAN JOURNAL OF CHEMISTRY, 2022, 15 (07)
  • [39] Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications
    Tuzlakoglu, K
    Alves, CM
    Mano, JF
    Reis, RL
    MACROMOLECULAR BIOSCIENCE, 2004, 4 (08) : 811 - 819
  • [40] Applications of Chitosan in Tissue Engineering
    Deka, Smriti Rekha
    Gupta, Seema
    Kumar, Pradeep
    TRENDS IN CARBOHYDRATE RESEARCH, 2021, 13 (01) : 1 - 11