The problem of plateau in hyperbolic space

被引:2
作者
Lonseth, AT
机构
[1] Univ Calif, Berkeley, CA USA
[2] Iowa State Coll, Ames, IA USA
关键词
D O I
10.2307/2371681
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:229 / 259
页数:31
相关论文
共 50 条
[41]   The Cauchy problem for properly hyperbolic equations in one space variable [J].
Spagnolo, Sergio ;
Taglialatela, Giovanni .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2022, 19 (03) :439-466
[42]   Existence of a Solution to the Cauchy Problem for the Aggregation Equation in Hyperbolic Space [J].
Vildanova, V. F. .
RUSSIAN MATHEMATICS, 2020, 64 (07) :27-37
[43]   The solution gap of the Brezis-Nirenberg problem on the hyperbolic space [J].
Benguria, Soledad .
MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03) :537-559
[44]   THE REMAINDER TERM IN A LATTICE-POINT PROBLEM IN HYPERBOLIC SPACE [J].
THURNHEER, P .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (13) :581-583
[45]   On the generalized Weyl problem for flat metrics in the hyperbolic 3-space [J].
Galvez, Jose A. ;
Martinez, Antonio ;
Teruel, Jose L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) :144-150
[46]   The Cauchy Problem for Wave Maps on Hyperbolic Space in Dimensions d ≥ 4 [J].
Lawrie, Andrew ;
Oh, Sung-Jin ;
Shahshahani, Sohrab .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (07) :1954-2051
[47]   Existence of the Cauchy Problem for Aggregation Equation with Variable Exponents in the Hyperbolic Space [J].
Vildanova, V. F. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (06) :1572-1584
[48]   Existence of the Cauchy Problem for Aggregation Equation with Variable Exponents in the Hyperbolic Space [J].
V. F. Vildanova .
Lobachevskii Journal of Mathematics, 2022, 43 :1572-1584
[49]   A solution to the lower dimensional Busemann-Petty problem in the hyperbolic space [J].
V. Yaskin .
The Journal of Geometric Analysis, 2006, 16 :735-745
[50]   Cauchy problem on non-globally hyperbolic space-times [J].
Aref'eva, I. Ya. ;
Ishiwatari, T. ;
Volovich, I. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 157 (03) :1646-1654