NOTE ON THE CANONICAL QUANTIZATION OF THE TIME-DEPENDENT HARTREE-FOCK EQUATION

被引:3
|
作者
IWASAKI, M
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1981年 / 65卷 / 06期
关键词
D O I
10.1143/PTP.65.2042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2042 / 2045
页数:4
相关论文
共 50 条
  • [31] GEOMETRIC APPROXIMATION IN TIME-DEPENDENT HARTREE-FOCK THEORY
    JAMIESON, MJ
    GHAFARIAN, A
    MOLECULAR PHYSICS, 1975, 30 (05) : 1611 - 1614
  • [32] On Blowup for Time-Dependent Generalized Hartree-Fock Equations
    Hainzl, Christian
    Lenzmann, Enno
    Lewin, Mathieu
    Schlein, Benjamin
    ANNALES HENRI POINCARE, 2010, 11 (06): : 1023 - 1052
  • [33] DISSIPATION AND FORCES IN TIME-DEPENDENT HARTREE-FOCK CALCULATIONS
    REINHARD, PG
    UMAR, AS
    DAVIES, KTR
    STRAYER, MR
    LEE, SJ
    PHYSICAL REVIEW C, 1988, 37 (03): : 1026 - 1035
  • [34] SEPARABLE APPROXIMATION TO TIME-DEPENDENT HARTREE-FOCK CALCULATIONS
    KOONIN, S
    FLANDERS, B
    FLOCARD, H
    WEISS, M
    PHYSICS LETTERS B, 1978, 77 (01) : 13 - 17
  • [35] New derivation of time-dependent Hartree-Fock theory
    Heinrichs, J.
    CHEMICAL PHYSICS LETTERS, 1968, 2 (05) : 315 - 318
  • [36] Implementation of time-dependent Hartree-Fock in real space
    Panta, Uday
    Strubbe, David A.
    ELECTRONIC STRUCTURE, 2024, 6 (04):
  • [37] PARTICLES + CORE REDUCTION OF TIME-DEPENDENT HARTREE-FOCK
    JENSEN, AS
    KOONIN, SE
    PHYSICS LETTERS B, 1978, 73 (03) : 243 - 246
  • [38] NONLINEAR RESONANCE IN THE TIME-DEPENDENT HARTREE-FOCK MANIFOLD
    SAKATA, F
    KUBO, T
    MARUMORI, T
    IWASAWA, K
    HASHIMOTO, Y
    PHYSICAL REVIEW C, 1994, 50 (01): : 138 - 147
  • [39] SOLVING THE SINGLE LAYER MULTICONFIGURATION TIME-DEPENDENT HARTREE-FOCK EQUATION IN SECOND QUANTIZATION REPRESENTATION BASED ON A DECOMPOSITION OF THE OVERALL FOCK SPACE
    Li, Wenliang
    Wenwu, X.
    Keli, H.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (01)