Using Image Retrieval to perform Computer-Aided Diagnosis of Mammographic Masses
被引:0
|
作者:
Sam, Baron B.
论文数: 0引用数: 0
h-index: 0
机构:
Sathyabama Univ, Chennai, Tamil Nadu, IndiaSathyabama Univ, Chennai, Tamil Nadu, India
Sam, Baron B.
[1
]
KrishnaSagar, K.
论文数: 0引用数: 0
h-index: 0
机构:
Sathyabama Univ, Chennai, Tamil Nadu, IndiaSathyabama Univ, Chennai, Tamil Nadu, India
KrishnaSagar, K.
[1
]
Raj, Prudhvi K.
论文数: 0引用数: 0
h-index: 0
机构:
Sathyabama Univ, Chennai, Tamil Nadu, IndiaSathyabama Univ, Chennai, Tamil Nadu, India
Raj, Prudhvi K.
[1
]
机构:
[1] Sathyabama Univ, Chennai, Tamil Nadu, India
来源:
RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES
|
2016年
/
7卷
/
03期
关键词:
Breast masses;
computer-aided diagnosis (CAD);
content-based image retrieval (CBIR);
mammography;
D O I:
暂无
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The best method to detect breast cancer in its early stage is by using Mammographic masses. Mammography is an advanced type of x-ray used for obtaining detailed images of the breast. Several techniques may be used to solve this problem. But, many of the techniques fall short of quantifiability in the retrieval stage, so the accuracy is limited. To defeat this disservice, we tend to propose an ascendible strategy for recovery and diagnosing of mammographic bounty. In particular, for an inquiry mammographic region of interest (ROI), scale-invariant feature transform (SIFT) choices are extricated and looked in an exceedingly vocabulary tree, that stores all the quantal choices of prior analyzed mammographic ROIs. Furthermore, to absolutely apply the discriminative force of SIFT alternatives, talk data inside of the vocabulary tree is utilized to decide the weights of tree hubs. The recovered ROIs are then sent to confirm regardless of whether the inquiry ROI contains a mass. The resulting technique has an excellent quantifiability as a result of low spatial transient cost.
机构:
Univ Chicago, Dept Radiol, Carl J Vyborny Translat Lab Breast Imaging Res, Chicago, IL 60637 USA
Univ Illinois, Dept Bioengn, Chicago, IL 60680 USAUniv Chicago, Dept Radiol, Carl J Vyborny Translat Lab Breast Imaging Res, Chicago, IL 60637 USA
Gruszauskas, Nicholas P.
Drukker, Karen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Carl J Vyborny Translat Lab Breast Imaging Res, Chicago, IL 60637 USAUniv Chicago, Dept Radiol, Carl J Vyborny Translat Lab Breast Imaging Res, Chicago, IL 60637 USA
Drukker, Karen
论文数: 引用数:
h-index:
机构:
Giger, Maryellen L.
论文数: 引用数:
h-index:
机构:
Sennett, Charlene A.
Pesce, Lorenzo L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Radiol, Carl J Vyborny Translat Lab Breast Imaging Res, Chicago, IL 60637 USAUniv Chicago, Dept Radiol, Carl J Vyborny Translat Lab Breast Imaging Res, Chicago, IL 60637 USA