2 EXAMPLES ON THE CONVERGENCE OF CERTAIN RANK-2 MINIMIZATION METHODS FOR QUADRATIC FUNCTIONALS IN HILBERT-SPACE

被引:6
作者
STOER, J
机构
[1] Institut für Angewandte Mathematik, Statistik der Universität Würzburg Am Hubland
关键词
D O I
10.1016/0024-3795(79)90135-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two simple examples are given showing that the usual rank-2 algorithms for minimizing functionals f{hook}:H→R on a real Hilbert space H may converge only linearly and in particular bad cases only sublinearly, even for quadratic f{hook}. © 1979.
引用
收藏
页码:217 / 222
页数:6
相关论文
共 12 条
[1]   QUASI-NEWTON METHODS AND THEIR APPLICATION TO FUNCTION MINIMISATION [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1967, 21 (99) :368-&
[2]  
DAVIDON WC, 1959, ANL5990 REP
[3]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[4]  
Dixon L.C.W., 1972, J OPTIMIZ THEORY APP, V10, P34, DOI 10.1007/BF00934961
[5]   A RAPIDLY CONVERGENT DESCENT METHOD FOR MINIMIZATION [J].
FLETCHER, R ;
POWELL, MJD .
COMPUTER JOURNAL, 1963, 6 (02) :163-&
[6]  
Fortuna Z., 1974, Control and Cybernetics, V3, P63
[7]  
FORTUNATU Z, UNPUBLISHED
[8]   DAVIDONS METHOD IN HILBERT SPACE [J].
HORWITZ, LB ;
SARACHIK, PE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) :676-&
[9]   ORDER OF CONVERGENCE OF CERTAIN QUASI-NEWTON-METHODS [J].
SCHULLER, G .
NUMERISCHE MATHEMATIK, 1974, 23 (02) :181-192
[10]   CONVERGENCE RATE OF IMPERFECT MINIMIZATION ALGORITHMS IN BROYDENS BETA-CLASS [J].
STOER, J .
MATHEMATICAL PROGRAMMING, 1975, 9 (03) :313-335