A New Generalized Ordinal Logit Model for Multicategory Response Data

被引:0
|
作者
Jamroenpinyo, Somsri [1 ]
O'Brien, Timothy E. [2 ]
Bumrungsup, Chinnaphong [1 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Pathum Thani 12121, Thailand
[2] Loyola Univ, Dept Math Sci, Chicago, IL 60626 USA
来源
THAILAND STATISTICIAN | 2012年 / 10卷 / 01期
关键词
adjacent-categories; baseline-category logits; continuation-ratios; multinomial distribution; nominal responses; ordinal responses; proportional odds;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces and illustrates a new generalized ordinal logit (GOL) model which connects the four commonly-used multicategory logit models by using two hyper-parameters. The commonly used models in multicategory models are the adjacent-categories logit model (AC), the proportional odds (PO) model, and two variants of the continuation-ratio logit (CR) models. The GOL model generalizes these four models in the sense that each is a special case of the larger GOL model, and this GOL model is used for multicategory response data. In this article, we discuss (maximum likelihood) estimation and testing related to the GOL model, providing SAS/IML computer programs for the same, and illustrating the use of the proposed model with two real datasets.
引用
收藏
页码:87 / 105
页数:19
相关论文
共 50 条
  • [31] A GENERALIZED LINEAR MIXED MODEL FOR LONGITUDINAL BINARY DATA WITH A MARGINAL LOGIT LINK FUNCTION
    Parzen, Michael
    Ghosh, Souparno
    Lipsitz, Stuart
    Sinha, Debajyoti
    Fitzmaurice, Garrett M.
    Mallick, Bani K.
    Ibrahim, Joseph G.
    ANNALS OF APPLIED STATISTICS, 2011, 5 (01): : 449 - 467
  • [32] A constrained regression model for an ordinal response with ordinal predictors
    Espinosa, Javier
    Hennig, Christian
    STATISTICS AND COMPUTING, 2019, 29 (05) : 869 - 890
  • [33] A constrained regression model for an ordinal response with ordinal predictors
    Javier Espinosa
    Christian Hennig
    Statistics and Computing, 2019, 29 : 869 - 890
  • [34] Slice sampling algorithm for estimating the item response theory model with ordinal response data
    Zhang, Jiwei
    Zhang, Zhaoyuan
    Lu, Jing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4909 - 4932
  • [35] Impact of interactivity on learning outcome in online learning settings: Ordinal logit model
    Leem, Byung-Hak
    INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT, 2023, 15
  • [36] Evaluating a new graphical ordinal logit method (GOLDminer) in the diagnosis of myocardial infarction utilizing clinical features and laboratory data
    Bernstein, LH
    Qamar, A
    McPherson, C
    Zarich, S
    YALE JOURNAL OF BIOLOGY AND MEDICINE, 1999, 72 (04): : 259 - 268
  • [37] Patterns of Dupuytren Disease in Fingers: Studying Correlations with a Multivariate Ordinal Logit Model
    Lanting, Rosanne
    Nooraee, Nazanin
    Werker, Paul M. N.
    van den Heuvel, Edwin R.
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2014, 134 (03) : 483 - 490
  • [39] A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis
    Zeng, Ziqiang
    Zhu, Wenbo
    Ke, Ruimin
    Ash, John
    Wang, Yinhai
    Xu, Jiuping
    Xu, Xinxin
    ACCIDENT ANALYSIS AND PREVENTION, 2017, 99 : 51 - 65
  • [40] Generalized residuals and outlier detection for ordinal data with challenging data structures
    Iannario, Maria
    Monti, Anna Clara
    STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (04): : 1197 - 1216