Overlapping Iterated Function Systems on a Segment

被引:0
作者
Barnsley, M. [1 ]
Igudesman, K. B. [2 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Kazan Volga Reg Fed Univ, Kazan 420008, Russia
关键词
iterated function systems; attractor; dynamical system;
D O I
10.3103/S1066369X12120018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Overlapping iterated function systems generate families of injective mappings from the attractor onto shift-invariant subsets of the code space. In this paper we consider an example of such a family for the uniformly linear systems of iterated functions on the unit segment.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 15 条
[1]  
Barnsley M. F., SYMMETRIC ITINERARY
[2]  
Barnsley M. F., 2005, THEORY APPL FRACTAL, P3
[3]  
Barnsley M.F., 2006, SUPERFRACTALS
[4]  
Barnsley M. F., HOMEOMORPHISMS GEN O
[5]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[6]   How to Transform and Filter Images Using Iterated Function Systems [J].
Barnsley, Michael F. ;
Harding, Brendan ;
Igudesman, Konstantin .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (04) :1001-1028
[7]   Transformations between Self-Referential Sets [J].
Barnsley, Michael F. .
AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (04) :291-304
[8]  
Hata M., 1985, JAPAN J APPL MATH, V2, P381, DOI [10.1007/BF03167083, 10.1007/bf03167083]
[9]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[10]  
Igudesman K. B., 2009, IZV VYSSH UCHEBN ZAV, P75