ON CONHARMONIC CURVATURE TENSOR OF SASAKIAN FINSLER STRUCTURES ON TANGENT BUNDLES

被引:1
作者
Caliskan, Nesrin [1 ]
机构
[1] Usak Univ, Fac Educ, Dept Math & Sci Educ, TR-64200 Usak, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2018年 / 67卷 / 02期
关键词
Conharmonic curvature tensor; conharmonically flatness; quasi-conharmonically flatness; xi-conharmonically flatness; phi-conharmonically flatness; Sasakian Finsler structure; Einstein manifold; tangent bundle;
D O I
10.1501/Commua1_0000000881
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The content of this paper is made up of conharmonic curvature tensor K of Sasakian Finsler structures on tangent bundles. In this manner, quasi-conharmonically flat,xi-conharmonically flat, phi-conharmonically flat Sasakian Finsler structures are studied. Some structure theorems including Einstein Sasakian Finsler manifolds satisfying R(X-H; Y-H).K = 0 are clarified.
引用
收藏
页码:282 / 290
页数:9
相关论文
共 17 条
  • [1] AKBAR ALI., 2013, INT J AVANCED MATHEM, V1, P134
  • [2] Antonelli P.L., 2003, HDB FINSLER GEOMETRY
  • [3] Classification of complete Finsler manifolds through a second order differential equation
    Asanjarani, A.
    Bidabad, B.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) : 434 - 444
  • [4] Asghari N, 2014, THAI J MATH, V12, P525
  • [5] De U. C., 2012, INT SCHOLARLY RES NE, P1
  • [6] Doric M., 1988, PUBLICATIONS I MATH, V44, P97
  • [7] Dwivedi MK, 2011, B MALAYS MATH SCI SO, V34, P171
  • [8] Ghosh S., 2011, INT J CARBOHYDR CHEM, V2011, P1, DOI DOI 10.1155/2011/693759
  • [9] Hasegawa I, 1996, FUND THEOR, V76, P75
  • [10] ISHII Y., 1957, TENSOR, V7, P73