HIGH-ORDER DERIVATIONS AND HIGH-ORDER LIE-LIKE ELEMENTS

被引:0
作者
CHANG, ST [1 ]
机构
[1] QUEENS UNIV,KINGSTON,ONTARIO,CANADA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1972年 / 24卷 / 06期
关键词
D O I
10.4153/CJM-1972-123-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1154 / 1163
页数:10
相关论文
共 50 条
[11]   Recurrences for Quadrilateral High-Order Finite Elements [J].
Sven Beuchler ;
Tim Haubold ;
Veronika Pillwein .
Mathematics in Computer Science, 2022, 16
[12]   High-order conforming finite elements on pyramids [J].
Nigam, Nilima ;
Phillips, Joel .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) :448-483
[13]   Error and work estimates for high-order elements [J].
Loehner, Rainald .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) :2184-2188
[14]   Disentangling high-order mechanisms and high-order behaviours in complex systems [J].
Rosas, Fernando E. ;
Mediano, Pedro A. M. ;
Luppi, Andrea I. ;
Varley, Thomas F. ;
Lizier, Joseph T. ;
Stramaglia, Sebastiano ;
Jensen, Henrik J. ;
Marinazzo, Daniele .
NATURE PHYSICS, 2022, 18 (05) :476-477
[15]   Comparison of high-order curved finite elements [J].
Sevilla, Ruben ;
Fernandez-Mendez, Sonia ;
Huerta, Antonio .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (08) :719-734
[16]   HIGH-ORDER POLYNOMIAL ELEMENTS WITH ISOPARAMETRIC MAPPING [J].
HOPPE, V .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (12) :1747-1769
[17]   Nonlinear particle tracking for high-order elements [J].
Coppola, G ;
Sherwin, SJ ;
Peiró, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) :356-386
[18]   Efficient visualization of high-order finite elements [J].
Remacle, Jean-Francois ;
Chevaugeon, Nicolas ;
Marchandise, Emilie ;
Geuzaine, Christophe .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) :750-771
[19]   High-order nonreflecting boundary conditions without high-order derivatives [J].
Givoli, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :849-870
[20]   High-Order Symplectic Partitioned Lie Group Methods [J].
Geir Bogfjellmo ;
Håkon Marthinsen .
Foundations of Computational Mathematics, 2016, 16 :493-530