2-DIMENSIONAL MINIMAL CUBATURE FORMULAS AND MATRIX EQUATIONS

被引:6
作者
SCHMID, HJ
机构
关键词
MINIMAL CUBATURE FORMULAS; MATRIX EQUATION; REAL IDEAL;
D O I
10.1137/S0895479893252404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For strictly positive, linear, and centrally symmetric functionals in two dimensions the existence of cubature formulas attaining the known lower bounds is equivalent to the solvability of certain matrix equations under some constraints. Any solution generates a real ideal the common roots of which are the nodes of the cubature formula. These results are applied to construct an infinite number of minimal positive cubature formulas of an arbitrary degree of erectness for one special, but classical, integral.
引用
收藏
页码:898 / 921
页数:24
相关论文
共 34 条
[1]   MINIMAL CUBATURE FORMULAS OF DEGREE 2K-1 FOR 2 CLASSICAL FUNCTIONALS [J].
COOLS, R ;
SCHMID, HJ .
COMPUTING, 1989, 43 (02) :141-157
[2]  
COOLS R, 1993, INT S NUM M, V112, P57
[3]   A CONSTRUCTION OF NONNEGATIVE APPROXIMATE QUADRATURES [J].
DAVIS, PJ .
MATHEMATICS OF COMPUTATION, 1967, 21 (100) :578-&
[4]  
DAVIS PJ, 1975, METHODS NUMERICAL IN
[5]  
Davis PJ, 1979, CIRCULANT MATRICES
[6]  
Dubois D. W., 1970, STUDIES ESSAYS, P107
[7]   LOCAL REALITY ON ALGEBRAIC VARIETIES [J].
EFROYMSON, G .
JOURNAL OF ALGEBRA, 1974, 29 (01) :133-142
[8]  
Engels H., 1980, NUMERICAL QUADRATURE
[9]  
GODZINA G, 1990, THESIS GERMANY
[10]   ORTHOGONALITY AND RECURSION FORMULAS FOR POLYNOMIALS IN N VARIABLES [J].
KOWALSKI, MA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :316-323