Application of two parameter eigencurves to Sturm-Liouville problems with eigenparameter-dependent boundary conditions

被引:33
作者
Binding, PA [1 ]
Browne, PJ [1 ]
机构
[1] UNIV SASKATCHEWAN,DEPT MATH & STAT,SASKATOON,SK S7N 0W0,CANADA
关键词
D O I
10.1017/S030821050003047X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oscillation, comparison and asymptotic theory for the Sturm-Liouville problem -(p(x)y'(x))'+q(x)y(x)=lambda r(x)y(x), 0 less than or equal to x less than or equal to 1, with 1/p,q,r is an element of L(1)( 0,1 ),p,r>0, are studied subject to eigenvalue-dependent boundary conditions (a(j) lambda+b(j))y(j)=(c(f)lambda+d(j))(py')(j), j=0,1. This continues previous work on cases with (-1)(j)sigma(j) less than or equal to 0 where sigma(f)=a(f)d(f)-b(j)c(j). We now consider the remaining sign conditions for sigma(f), exploiting the interplay between the graph of cot theta(-)(lambda,1), for a modified Prufer angle theta(-), and the eigencurves of a related two-parameter problem.
引用
收藏
页码:1205 / 1218
页数:14
相关论文
共 14 条
[1]  
Atkinson FV., 1964, DISCRETE CONTINUOUS
[2]   SPECTRAL PROPERTIES OF 2 PARAMETER EIGENVALUE PROBLEMS .2. [J].
BINDING, P ;
BROWNE, PJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 106 :39-51
[3]   CORRECTION [J].
BINDING, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :87-90
[4]   VARIATIONAL-PRINCIPLES FOR INDEFINITE EIGENVALUE PROBLEMS [J].
BINDING, P ;
YE, QA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 218 :251-262
[5]   VARIATIONAL-PRINCIPLES WITHOUT DEFINITENESS CONDITIONS [J].
BINDING, P ;
YE, QA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (06) :1575-1583
[6]  
Binding P., 1988, APPL ANAL, V29, P107
[7]  
DIJKSMA A, 1980, P ROY SOC EDINB A, V86, P1
[8]  
DIJKSMA A, 1987, CMS C P, V8, P87
[9]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308
[10]   STRONGLY DEFINITIZABLE LINEAR PENCILS IN HILBERT-SPACE [J].
LANCASTER, P ;
SHKALIKOV, A ;
YE, Q .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 17 (03) :338-360