VARIATIONAL PRINCIPLE FOR THE ASYMPTOTIC SPEED OF FRONTS OF THE DENSITY-DEPENDENT DIFFUSION-REACTION EQUATION

被引:13
|
作者
BENGURIA, RD
DEPASSIER, MC
机构
[1] Facultad de Física, P. Universidad Catlica de Chile, Santiago 22
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 03期
关键词
D O I
10.1103/PhysRevE.52.3285
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the minimal speed for the existence of monotonic fronts of the equation u(t) = (u(m))(xx) + f(u) with f(0) = f(1) = 0, m > 1 and f > 0 in (0,1), is derived from a variational principle. The variational principle allows us to calculate, in principle, the exact speed for general f. The case m = 1 when f'(0) = 0 is included as an extension of the results.
引用
收藏
页码:3285 / 3287
页数:3
相关论文
共 50 条
  • [1] Attractors in a density-dependent diffusion-reaction model
    Biro, Z
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (05) : 485 - 499
  • [2] Speed and Shape of Population Fronts with Density-Dependent Diffusion
    Stokes, Beth M.
    Rogers, Tim
    James, Richard
    BULLETIN OF MATHEMATICAL BIOLOGY, 2024, 86 (12)
  • [3] Variational Characterization of the Speed of Reaction Diffusion Fronts for Gradient Dependent Diffusion
    Benguria, Rafael D.
    Depassier, M. Cristina
    ANNALES HENRI POINCARE, 2018, 19 (09): : 2717 - 2726
  • [4] Variational Characterization of the Speed of Reaction Diffusion Fronts for Gradient Dependent Diffusion
    Rafael D. Benguria
    M. Cristina Depassier
    Annales Henri Poincaré, 2018, 19 : 2717 - 2726
  • [5] Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions
    Hosseini, Kamyar
    Mayeli, Peyman
    Bekir, Ahmet
    Guner, Ozkan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (01) : 1 - 4
  • [6] Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions
    Kamyar Hosseini
    Peyman Mayeli
    Ahmet Bekir
    Ozkan Guner
    Communications in Theoretical Physics, 2018, 69 (01) : 1 - 4
  • [8] MICROSCOPIC SELECTION PRINCIPLE FOR A DIFFUSION-REACTION EQUATION
    BRAMSON, M
    CALDERONI, P
    DEMASI, A
    FERRARI, P
    LEBOWITZ, J
    SCHONMANN, RH
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) : 905 - 920
  • [9] Wave fronts in a bistable reaction-diffusion system with density-dependent diffusivity
    Ctro. Atom. Bariloche , Instituto Balseiro , 8400 Bariloche, Río Negro, Argentina
    Physica A: Statistical Mechanics and its Applications, 1996, 226 (3-4): : 310 - 323
  • [10] Wave fronts in a bistable reaction-diffusion system with density-dependent diffusivity
    Strier, DE
    Zanette, DH
    Wio, HS
    PHYSICA A, 1996, 226 (3-4): : 310 - 323