A NUMERICAL PROCEDURE FOR DIFFUSION SUBJECT TO THE SPECIFICATION OF MASS

被引:45
作者
CANNON, JR
MATHESON, AL
机构
[1] Lamar University, Beaumont, TX 77710
关键词
D O I
10.1016/0020-7225(93)90010-R
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An application of the maximum principle yields an a priori estimate for the derivative u(x) of the solution u of u(t) = u(xx) + s, 0 < x < 1, 0 < t less-than-or-equal-to T, subject to u(x, 0) = f(x), 0 < x < 1, u(1, t) = g(t), 0 < t less-than-or-equal-to T, and the specification of mass integral-b(t)/0 u(x, t) dx = m(t), 0 < b(t) < 1. From this a priori estimate the continuous dependence of the solution u on the data is established. The maximum principle can also be applied to a numerical scheme for the derivative of u. Thus convergence is shown for an elementary numerical scheme. The article concludes with the results of some numerical experiments.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1963, MATH COMP
[2]  
Cannon J. R., 1982, Numerical Solutions of Partial Differential Equations. Proceedings of the 1981 Conference, P527
[3]  
Cannon J.R., 1963, Q APPL MATH, V21, P155
[4]  
Cannon J. R, 1981, B U MATH ITAL S, V1, P253
[5]  
Cannon J. R., 1992, MODELING ANAL DIFFUS, P40
[6]   A GALERKIN PROCEDURE FOR DIFFUSION-EQUATIONS WITH BOUNDARY INTEGRAL CONDITIONS [J].
CANNON, JR ;
LIN, YP .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1990, 28 (07) :579-587
[7]   A GALERKIN PROCEDURE FOR THE DIFFUSION EQUATION SUBJECT TO THE SPECIFICATION OF MASS [J].
CANNON, JR ;
ESTEVA, SP ;
VANDERHOEK, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :499-515
[8]   DIFFUSION SUBJECT TO THE SPECIFICATION OF MASS [J].
CANNON, JR ;
VANDERHOEK, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :517-529
[9]   AN IMPLICIT FINITE-DIFFERENCE SCHEME FOR THE DIFFUSION EQUATION SUBJECT TO MASS SPECIFICATION [J].
CANNON, JR ;
LIN, YP ;
WANG, SM .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1990, 28 (07) :573-578
[10]  
CANNON JR, 1989, REND MAT APPL, V9, P239