ROBUST NONPARAMETRIC REGRESSION IN TIME-SERIES

被引:8
|
作者
TRUONG, YK [1 ]
机构
[1] UNIV N CAROLINA, CHAPEL HILL, NC 27514 USA
关键词
KERNEL ESTIMATOR; LOCAL M-ESTIMATOR; NONPARAMETRIC REGRESSION; OPTIMAL RATES OF CONVERGENCE; STATIONARY TIME SERIES; MIXING PROCESSES;
D O I
10.1016/0047-259X(92)90064-M
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a stationary time series (Xt, Yt), t = 0, ±1, ... with Xt being Rd-valued and Yt real-valued. Let ψ(·) denote a monotone function and let θ(·) denote the robust conditional location functional so that E[ψ(Y0 - θ(X0))|X0] = 0. Given a finite realization (X1, Y1), ..., (Xn, Yn), the problem of estimating θ(·) is considered. Under appropriate regularity conditions, it is shown that a sequence of the robust conditional location functional estimators can be chosen to achieve the optimal rate of convergence n -1 (2 + d) both pointwise and in Lq (1 ≤ q < ∞) norms restricted to a compact; it can also be chosen to achieve the optimal rate of convergence (n-1 log(n)) 1 (2 + d) in L∞ norm restricted to a compact. © 1992.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 50 条