A STRATEGY FOR GLOBAL CONVERGENCE IN A SEQUENTIAL QUADRATIC-PROGRAMMING ALGORITHM

被引:31
作者
BOGGS, PT
TOLLE, JW
机构
[1] UNIV N CAROLINA,DEPT MATH,CHAPEL HILL,NC 27599
[2] UNIV N CAROLINA,DEPT OPERAT RES,CHAPEL HILL,NC 27599
关键词
D O I
10.1137/0726036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:600 / 623
页数:24
相关论文
共 19 条
[1]  
BOGGS P, 1985, 855 U N CAR TECHN RE
[2]   AUGMENTED LAGRANGIANS WHICH ARE QUADRATIC IN THE MULTIPLIER [J].
BOGGS, PT ;
TOLLE, JW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 31 (01) :17-26
[3]  
Broyden C. G., 1973, Journal of the Institute of Mathematics and Its Applications, V12, P223
[4]  
CHAMBERLAIN RM, 1982, MATH PROGRAM STUD, V16, P1
[5]  
COLEMAN T, 1984, SIAM J NUMER ANAL, V20, P755
[6]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[7]  
FLETCHER R, 1972, CLASS METHODS NONLIN, V3, P371
[8]   A CONVERGENCE THEORY FOR A CLASS OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION [J].
FONTECILLA, R ;
STEIHAUG, T ;
TAPIA, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1133-1151
[9]  
Gill PE, 1981, PRACTICAL OPTIMIZATI
[10]   SUPERLINEARLY CONVERGENT VARIABLE METRIC ALGORITHMS FOR GENERAL NONLINEAR-PROGRAMMING PROBLEMS [J].
HAN, SP .
MATHEMATICAL PROGRAMMING, 1976, 11 (03) :263-282