Two-Stage Penalized Composite Quantile Regression with Grouped Variables

被引:1
|
作者
Bang, Sungwan [1 ]
Jhun, Myoungshic [2 ]
机构
[1] Korea Mil Acad, Dept Math, Seoul, South Korea
[2] Korea Univ, Dept Stat, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
Composite quantile regression; factor selection; penalization; sup-norm; variable selection;
D O I
10.5351/CSAM.2013.20.4.259
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a penalized composite quantile regression (CQR) that performs a variable selection in the linear model with grouped variables. An adaptive sup-norm penalized CQR (ASCQR) is proposed to select variables in a grouped manner; in addition, the consistency and oracle property of the resulting estimator are also derived under some regularity conditions. To improve the efficiency of estimation and variable selection, this paper suggests the two-stage penalized CQR (TSCQR), which uses the ASCQR to select relevant groups in the first stage and the adaptive lasso penalized CQR to select important variables in the second stage. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 50 条
  • [1] Hierarchically penalized Cox regression with grouped variables
    Wang, S.
    Nan, B.
    Zhu, N.
    Zhu, J.
    BIOMETRIKA, 2009, 96 (02) : 307 - 322
  • [2] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    Computational Statistics, 2021, 36 : 333 - 346
  • [3] An application of parametric quantile regression to extend the two-stage quantile regression for ratemaking
    Baione, Fabio
    Biancalana, Davide
    SCANDINAVIAN ACTUARIAL JOURNAL, 2021, 2021 (02) : 156 - 170
  • [4] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [5] An application of two-stage quantile regression to insurance ratemaking
    Heras, Antonio
    Moreno, Ignacio
    Vilar-Zanon, Jose L.
    SCANDINAVIAN ACTUARIAL JOURNAL, 2018, (09) : 753 - 769
  • [6] Heterogeneity and nonconstant effect in two-stage quantile regression
    Muller, Christophe
    ECONOMETRICS AND STATISTICS, 2018, 8 : 3 - 12
  • [7] Inconsistency transmission and variance reduction in two-stage quantile regression
    Kim, Tae-Hwan
    Muller, Christophe
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (04) : 1044 - 1077
  • [8] Inconsistency transmission and variance reduction in two-stage quantile regression
    Kim, Tae-Hwan
    Muller, Christophe
    Muller, Christophe (christophe.muller@univ-amu.fr), 1600, Taylor and Francis Ltd. (49): : 1044 - 1077
  • [9] A two-stage procedure to pool information across quantile levels in linear quantile regression
    Kuk, Anthony
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (14) : 2852 - 2864
  • [10] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438