ON AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {27, 24, 1; 1, 8, 27}

被引:3
作者
Tsiovkina, L. Yu [1 ]
机构
[1] Russian Acad Sci, Inst Math & Mech, Ural Branch, Sophia Kovalevskaya Str 16, Ekaterinburg 620990, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2013年 / 10卷
关键词
distance-regular graph; automorphism; arc-transitive graph; antipodal cover;
D O I
10.17377/semi.2013.10.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array {27, 24, 1; 1, 8, 27}. It is shown, that there exists the unique (up to isomorphism) arctransitive distance-regular graph with intersection array {27, 24, 1; 1, 8, 27}. This graph is obtainable by the Cameron construction.
引用
收藏
页码:689 / 698
页数:10
相关论文
共 6 条
[1]  
Cameron P.J, 1991, LONDON MATH SOC STUD, V22
[2]  
Cameron P. J., 1999, LONDON MATH SOC STUD, V45
[3]   COVERS OF GRAPHS AND EGQS [J].
CAMERON, PJ .
DISCRETE MATHEMATICS, 1991, 97 (1-3) :83-92
[4]   DISTANCE REGULAR COVERS OF THE COMPLETE GRAPH [J].
GODSIL, CD ;
HENSEL, AD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 56 (02) :205-238
[5]  
Taylor D.E, 1992, J COMB THEORY A, V61, P113
[6]  
The GAP Group, 2013, GAP GROUPS ALGORITHM