The *congruence class of the solutions of some matrix equations

被引:24
作者
Zheng, Bing [1 ]
Yea, Lijuan [1 ]
Cvetkovic-Ilic, Dragana S. [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Univ Nis, Fac Sci, Dept Math, Nish, Serbia
关键词
Matrix equation; *Congruence class; Singular Value Decomposition (SVD); Generalized Singular Value Decomposition (GSVD); Frobenius norm; NONNEGATIVE-DEFINITE; AXA-ASTERISK;
D O I
10.1016/j.camwa.2008.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The *congruence class of a least square solution for the following matrix equations AX = B, A*XA = D, AXB = D and (AX XB) = (E F) is presented. Also, we derive necessary and sufficient conditions for the existence of a least square solution and present a general form of such solutions using the Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:540 / 549
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 1996, Iterative Methods for Sparse Linear Systems
[3]   Positive and real-positive solutions to the equation axa* = c in C*-algebras [J].
Cvetkovic-Ilic, D. ;
Dajic, Alegra ;
Koliha, J. J. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (06) :535-543
[4]   Re-nnd solutions of the matrix equation A X B=C [J].
Cvetkovic-Ilic, Dragana S. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 84 (01) :63-72
[5]  
DAI H, 1996, LINEAR ALGEBRA APPL, V246, P31
[6]  
DAJIC A, EQUATIONS AX C XB D
[7]   A TREE OF GENERALIZATIONS OF THE ORDINARY SINGULAR VALUE DECOMPOSITION [J].
DEMOOR, B ;
ZHA, HY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 147 :469-500
[8]   Least squares solution of BXAT = T over symmetric, skew-symmetric, and positive semidefinite X [J].
Deng, YB ;
Hu, XY ;
Zhang, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) :486-494
[9]  
Friswell MI, 1995, Finite element model updating in structural dynamics
[10]  
[郭翠平 Guo Cuiping], 2004, [高等学校计算数学学报, Numerical Mathematics A Journal of Chinese University], V26, P222