A NEW CRITERION FOR THE FIRST CASE OF FERMAT LAST THEOREM

被引:8
作者
DILCHER, K [1 ]
SKULA, L [1 ]
机构
[1] MASARYK UNIV, FAC SCI, DEPT MATH, CR-66295 BRNO, CZECH REPUBLIC
关键词
D O I
10.2307/2153341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if the first case of Fermat's last theorem fails for an odd prime l, then the sums of reciprocals module l, s(k, N) = Sigma 1/j (kl/N < j < (k + 1)l/N) are congruent to zero modl for all integers N and k with 1 less than or equal to N less than or equal to 46 and 0 less than or equal to k less than or equal to N - 1. This is equivalent to B-l-1(k/N) - B-l-1 = 0 (modl), where B-n and B-n(x) are the nth Bernoulli number and polynomial, respectively. The work can be considered as a result an Kummer's system of congruences.
引用
收藏
页码:363 / 392
页数:30
相关论文
共 35 条
[1]   ON THE KUMMER-MIRIMANOFF CONGRUENCES [J].
AGOH, T .
ACTA ARITHMETICA, 1990, 55 (02) :141-156
[2]  
Almkvist Gert, 1991, C R MATH REP ACAD SC, V13, P104
[3]  
Bartz Krystyna, 1993, C R MATH REP ACAD SC, V15, P46
[4]  
BATEMAN PT, 1975, MATH COMPUT, V29, P7, DOI 10.1090/S0025-5718-1975-0480293-9
[5]  
Borevich ZI, 1966, NUMBER THEORY
[6]  
Brillhart J., 1971, COMPUTERS NUMBER THE, P213
[7]   A SPECIAL EXTENSION OF WIEFERICH CRITERION [J].
CIKANEK, P .
MATHEMATICS OF COMPUTATION, 1994, 62 (206) :923-930
[8]   FERMAT LAST THEOREM (CASE-1) AND THE WIEFERICH CRITERION [J].
COPPERSMITH, D .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :895-902
[9]  
DICKSON LE, 1962, HIST THEORY NUMBERS, V1
[10]  
Eisenstein G., 1989, MATH WERKE, VII, P705