SOME FORMULAS OF RAMANUJAN, REVISITED

被引:2
作者
MONTALDI, E [1 ]
ZUCCHELLI, G [1 ]
机构
[1] UNIV MILANO,DIPARTIMENTO BIOL,CTR CONSIGLIO NAZL,I-20133 MILAN,ITALY
关键词
ELLIPTIC INTEGRALS; HYPERGEOMETRIC FUNCTIONS;
D O I
10.1137/0523028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An alternative form of a famous result of Ramanujan is given, which is quoted as Entry 29(b) in Chapter 10 of Berndt's [Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1988]. Other results of a similar kind are reconsidered and generalized.
引用
收藏
页码:562 / 569
页数:8
相关论文
共 50 条
[21]   Ramanujan series for Epstein zeta functions [J].
Zhou, Yajun .
RAMANUJAN JOURNAL, 2016, 40 (02) :367-388
[22]   On some formulas for the Horn function H7 (a, b, b′; c; w, z) [J].
Brychkov, Yu A. ;
Savischenko, N., V .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (11) :889-907
[23]   On some formulas for the Appell function F3(a, a′, b, b′; c; w, z) [J].
Brychkov, Yu. A. ;
Saad, Nasser .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (11) :910-923
[24]   On some formulas for the Appell function F4(a, b; c, c'; w, z) [J].
Brychkov, Yu. A. ;
Saad, Nasser .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (09) :629-644
[25]   An entry of Ramanujan on hypergeometric series in his Notebooks [J].
Rao, KS ;
Vanden Berghe, G ;
Krattenthaler, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (02) :239-246
[26]   On Some Formulas for the k-Analogue of Appell Functions and Generating Relations via k-Fractional Derivative [J].
Yilmaz, Ovgu Gurel ;
Aktas, Rabia ;
Tasdelen, Fatma .
FRACTAL AND FRACTIONAL, 2020, 4 (04) :1-20
[27]   Ramanujan's Theory of Elliptic Functions to the Cubic Base [J].
Chan, Heng Huat ;
Liu, Zhi-Guo .
RESULTS IN MATHEMATICS, 2025, 80 (03)
[28]   Ramanujan's cubic transformation and generalized modular equation [J].
Wang MiaoKun ;
Chu YuMing ;
Song YingQing .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) :2387-2404
[29]   Ramanujan's Master Theorem applied to the evaluation of Feynman diagrams [J].
Gonzalez, Ivan ;
Moll, Victor H. ;
Schmidt, Ivan .
ADVANCES IN APPLIED MATHEMATICS, 2015, 63 :214-230
[30]   On some formulas for the Horn functions G1(a,b,b′;w,z) and Γ2(b,b′;w,z) [J].
Brychkov, Yu. A. ;
Savischenko, N. V. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (10) :804-819