The present study focuses on the performance of the machine learning methods in classifying the boiling regimes of water up to critical heat flux conditions based on the acoustic characteristics of boiling. The data set is generated by conducting a pool boiling experiment on a wire heater at various heat fluxes varying from 54.95 kW/m2 to 2898.67 kW/m2. A Kanthal D wire of standard wire gauge 36 is used. The data set is divided into three classes: no boiling, nucleate boiling, and critical heat flux to identify the boiling incipience and critical heat flux. Much focus is insisted on identifying critical heat flux as it carries more practical importance in the safety of the cooling systems. Data set size optimization is per-formed to find the lowest number of records required for each method. Three machine-learning methods are employed to predict the boiling regime, namely, binary decision tree method, decision tree ensem-ble method and naive Bayes method. Out of these, the decision tree ensemble outperformed the binary decision tree and naive Bayes classifiers. The decision tree ensemble classified the regimes in the given data with the lowest classification error and inference time. The accurate classification of boiling regimes based on boiling acoustics strengthens the safety measures in real-time monitoring of cooling systems. & COPY; 2022 Elsevier Ltd. All rights reserved.
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Moze, Matic
Zupancic, Matevz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Zupancic, Matevz
Sedmak, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Sedmak, Ivan
Ferjancic, Klemen
论文数: 0引用数: 0
h-index: 0
机构:
Plinovodi Doo, Cesta Ljubljanske Brigade 11b, Ljubljana 1001, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Ferjancic, Klemen
Gjerkes, Henrik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Gorica, Sch Engn & Management, Vipavska 13, Nova Gorica 5000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Gjerkes, Henrik
Golobic, Iztok
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
机构:
Hokkaido Univ, Grad Sch Engn, Div Energy & Environm Syst, Kita Ku, Sapporo, Hokkaido 0608628, JapanHokkaido Univ, Grad Sch Engn, Div Energy & Environm Syst, Kita Ku, Sapporo, Hokkaido 0608628, Japan
Sakashita, Hiroto
Ono, Ayako
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Grad Sch Engn, Div Energy & Environm Syst, Kita Ku, Sapporo, Hokkaido 0608628, JapanHokkaido Univ, Grad Sch Engn, Div Energy & Environm Syst, Kita Ku, Sapporo, Hokkaido 0608628, Japan