GENERALIZED (h; r)-HARMONIC CONVEX FUNCTIONS AND INEQUALITIES

被引:2
作者
Noor, Muhammad Aslam [1 ]
Noor, Khalida Inayat [1 ]
Iftikhar, Sabah [1 ]
Safdar, Farhat [1 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
convex functions; general preinvex functions; differentiability; Hermite-Hadamard inequality;
D O I
10.28924/2291-8639-16-2018-542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to introduce a new class of harmonic convex functions with respect to non-negative function h; which is called generalized (h; r)-harmonic convex functions. We derive some new Fejer-Hermite-Hadamard type inequalities for generalized harmonic convex functions. Some special cases are also discussed. The ideas and techniques of this paper may stimulate further research.
引用
收藏
页码:542 / 555
页数:14
相关论文
共 35 条
[1]   Generalized convexity and inequalities [J].
Anderson, G. D. ;
Vamanamurthy, M. K. ;
Vuorinen, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1294-1308
[2]  
[Anonymous], 2016, J ADV MATH STUD
[3]  
CRISTESCU G., 2002, NONCONNECTED CONVEXI
[4]   ON η-CONVEXITY [J].
Delavar, Mohsen Rostamian ;
Dragomir, Silvestru Sever .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :203-216
[5]   ON φ-CONVEX FUNCTIONS [J].
Gordji, M. Eshaghi ;
Delavar, M. Rostamian ;
De La Sen, M. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (01) :173-183
[6]  
Gordji ME, 2015, INT J NONLINEAR ANAL, V6, P27
[7]  
Hadamard J., 1893, J MATH PURE APPL, V5, P171
[8]  
Hap L. V., 2013, INT J MATH ANAL, V7, P2067
[9]  
Hermite C, 1883, MATHESIS, V3, P1
[10]  
Iscan I, 2014, HACET J MATH STAT, V43, P935