A computational attack on the conjectures of Graffiti: New counterexamples and proofs

被引:10
作者
Brewster, TL [1 ]
Dinneen, MJ [1 ]
Faber, V [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
关键词
D O I
10.1016/0012-365X(94)00227-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graffiti is a computer program that checks for relationships among certain graph invariants. It uses a database of graphs and has generated well over 700 conjectures. Having obtained a readily available computer tape of all the nonisomorphic graphs with 10 or fewer vertices, we have tested approximately 200 of the Graffiti conjectures and have found counterexamples for over 40 of them. For each conjecture that failed we display a counterexample. We also provide results that came from analyzing those conjectures which had a small number of counterexamples. Finally, we prove some results about four of the conjectures.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 13 条
[1]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[2]  
BREWSTER TL, LAUR922074 LOS AL NA
[3]   CATALOGING THE GRAPHS ON 10 VERTICES [J].
CAMERON, RD ;
COLBOURN, CJ ;
READ, RC ;
WORMALD, NC .
JOURNAL OF GRAPH THEORY, 1985, 9 (04) :551-562
[4]  
CHUNG F, 1994, SIAM J DISCRETE MATH, V7, P433
[5]  
FAJTLOWICZ S, 1987, WRITTEN WALL
[6]  
Fajtlowicz S., 1988, C NUMER, V66, P23
[7]  
Fajtlowicz S., 1987, C NUMER, V60, P187
[8]  
FAJTLOWICZ S, 1986, CONGRESSU NUMERANTIU, V3
[9]  
FAJTLOWICZ S, 1990, CONGRESSUS NUMERANTI, V70, P231
[10]  
FAVARON O, 1989, SOME RESULTS CONJECT