ON THE PROPAGATOR OF SIERPINSKI GASKETS

被引:57
作者
KLAFTER, J
ZUMOFEN, G
BLUMEN, A
机构
[1] SWISS FED INST TECHNOL,PHYS CHEM LAB,CH-8092 ZURICH,SWITZERLAND
[2] UNIV BAYREUTH,INST PHYS,W-8580 BAYREUTH,GERMANY
[3] UNIV BAYREUTH,BIMF,W-8580 BAYREUTH,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 20期
关键词
D O I
10.1088/0305-4470/24/20/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present numerical calculations for the propagator P(r, t), the probability to reach a distance r at time t having started at the origin at t = 0, on Sierpinski gaskets. The results are confronted with approximate analytical expressions. It is shown that P(r, t) approximately t-d(s)/2-PI(xi), where xi is the scaling variable: xi = r/t1/d(w). In the short-xi regime the scaling function follows the form PI(xi) approximately exp(-c1-xi-d(w)), while for large xi, PI(xi) is given asymptotically by PI(xi) approximately xi-alpha exp(-c2-xi-nu), with alpha = (d(f) - d(w)/2)/(d(w) - 1) and nu = d(w)/(d(w) - 1). This result extends the previously derived expressions. The numerically observed oscillations which are superimposed on the power-law decay of the autocorrelation function P(r = 0, t) are analysed in terms of typical residence times on hierarchical substructures.
引用
收藏
页码:4835 / 4842
页数:8
相关论文
共 18 条
  • [1] ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
  • [2] ASYMPTOTICALLY EXACT SOLUTION OF THE ONE-DIMENSIONAL TRAPPING PROBLEM
    ANLAUF, JK
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (21) : 1845 - 1848
  • [3] PROBABILITY DENSITY FOR DIFFUSION ON FRACTALS
    BANAVAR, JR
    WILLEMSEN, JF
    [J]. PHYSICAL REVIEW B, 1984, 30 (11): : 6778 - 6779
  • [4] BROWNIAN-MOTION ON THE SIERPINSKI GASKET
    BARLOW, MT
    PERKINS, EA
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) : 543 - 623
  • [5] STEADY-STATE DIFFUSION-CONTROLLED A+A-]O REACTION IN EUCLIDEAN AND FRACTAL DIMENSIONS - RATE LAWS AND PARTICLE SELF-ORDERING
    CLEMENT, E
    SANDER, LM
    KOPELMAN, R
    [J]. PHYSICAL REVIEW A, 1989, 39 (12): : 6472 - 6477
  • [6] SADDLEPOINT APPROXIMATIONS IN STATISTICS
    DANIELS, HE
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04): : 631 - 650
  • [7] T3-7 HOPPING CONDUCTIVITY IN A CLASS OF DISORDERED-SYSTEMS
    DEUTSCHER, G
    LEVY, Y
    SOUILLARD, B
    [J]. EUROPHYSICS LETTERS, 1987, 4 (05): : 577 - 582
  • [8] DIFFUSIVE MOTION ON A FRACTAL - GNM(T)
    GUYER, RA
    [J]. PHYSICAL REVIEW A, 1985, 32 (04): : 2324 - 2335
  • [9] ANOMALOUS DIFFUSION, SUPERLOCALIZATION AND HOPPING CONDUCTIVITY ON FRACTAL MEDIA
    HARRIS, AB
    AHARONY, A
    [J]. EUROPHYSICS LETTERS, 1987, 4 (12): : 1355 - 1360
  • [10] DIFFUSION IN DISORDERED MEDIA
    HAVLIN, S
    BENAVRAHAM, D
    [J]. ADVANCES IN PHYSICS, 1987, 36 (06) : 695 - 798