USING MELNIKOV METHOD TO SOLVE SILNIKOV PROBLEMS

被引:150
作者
LIN, XB
机构
[1] Department of Mathematics, North Carolina State University, Raleigh
关键词
D O I
10.1017/S0308210500031528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function space approach is employed to obtain bifurcation functions for which the zeros correspond to the occurrence of periodic or aperiodic solutions near heteroclinic or homoclinic cycles. The bifurcation function for the existence of homoclinic solutions is the limiting case where the period is infinite. Examples include generalisations of Silnikov's main theorems and a retreatment of a singularly perturbed delay differential equation.
引用
收藏
页码:295 / 325
页数:31
相关论文
共 29 条
  • [2] Bohr H., 1951, ALMOST PERIODIC FUNC
  • [3] Chow S., 1989, J DYNAM DIFF EQU, V1, P3, DOI DOI 10.1007/BF01048789)
  • [4] AN EXAMPLE OF BIFURCATION TO HOMOCLINIC ORBITS
    CHOW, SN
    HALE, JK
    MALLETPARET, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (03) : 351 - 373
  • [5] CHOW SN, HOMOCLINIC HETEROCLI
  • [6] CHOW SN, HOMOCLINIC BIFURCATI
  • [7] CHOW SN, IN PRESS SIAM J APP
  • [8] CHOW SN, BIFURCATION HOMOCLIN
  • [9] GUCKENHEIMER J, 1986, APPLIED MATH SCI, V42
  • [10] HALE J, 1977, THEORY FUNCTIONAL DI