Entire Functions and Their Derivatives Share Two Finite Sets

被引:0
作者
Meng, Chao [1 ]
Hu, Pei-Chu [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2009年 / 49卷 / 03期
关键词
entire function; share set; uniqueness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the uniqueness of entire functions and prove the following theorem. Let n(>= 5), k be positive integers, and let S-1 = {z : z(n) - 1}, S-2 = {a(1), a(2), ... ,a(m)}, where a(1), a(2), ... , a(m), are distinct nonzero constants. If two non constant entire functions f and g satisfy E-f (S-1, 2) = E-g(S-1, 2) and E-f(k)(S-2, infinity) = E-g(k)(S-2, infinity), then one of the following cases must occur: (1) f = tg, {a(1), a(2), ... ,a(m)} = t{a(1), a(2), ... ,a(m)}, where t is a constant satisfying t(n) = 1; (2) f (z) = de(cz), g(z) = t/d e(-cz), {a(1), a(2), ... ,a(m)} = (-1)(k) c(2k) t{1/a(1), ... ,1/a(m)} where t, c, d are nonzero constants and t(n) = 1. The results in this paper improve the result given by Fang (M.L. Fang, Entire functions and their derivatives share two finite sets, Bull. Malaysian Math. Sc. Soc. 24(2001), 7-16).
引用
收藏
页码:473 / 481
页数:9
相关论文
共 10 条
[1]  
Banerjee A., 2005, INT J MATH SCI, V22, P3587
[2]   On uniqueness of meromorphic functions when two differential monomials share one value [J].
Banerjee, Abhijit .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) :607-622
[3]  
Fang M. L., 2001, B MALAYS MATH SCI SO, V24, P7
[4]  
Gross F., 1977, LECT NOTES MATH, V599
[5]  
Hayman W K., 1964, MEROMORPHIC FUNCTION
[6]   Weighted sharing and uniqueness of meromorphic functions [J].
Lahiri, I .
NAGOYA MATHEMATICAL JOURNAL, 2001, 161 :193-206
[7]  
Lahiri I., 2001, COMPLEX VARIABLES TH, V46, P241, DOI DOI 10.1080/17476930108815411
[8]  
Yang L., 1993, VALUE DISTRIBUTION T
[9]  
Yi H. X., 1994, SCI CHINA SER A, V24, P457
[10]  
Yi HX., 1995, COMPLEX VAR THEORY A, V28, P1