WIDTH DISTRIBUTION OF CURVATURE-DRIVEN INTERFACES - A STUDY OF UNIVERSALITY

被引:43
作者
PLISCHKE, M
RACZ, Z
ZIA, RKP
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,CTR STOCHAST PROC SCI & ENGN,BLACKSBURG,VA 24061
[2] VIRGINIA POLYTECH INST & STATE UNIV,DEPT PHYS,BLACKSBURG,VA 24061
来源
PHYSICAL REVIEW E | 1994年 / 50卷 / 05期
关键词
D O I
10.1103/PhysRevE.50.3589
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One-dimensional interfaces with curvature-driven growth kinetics are investigated. We calculate the steady-state distribution P(w2) of the square of the width of the interface w2 and show that, as in the case for random-walk interfaces, the result can be written in a scaling form w2P(w2)=(w2/w2), where w2 is the average of w2. The scaling function (x) is found to be distinct from that of random-walk interfaces, but, as our Monte Carlo simulations indicate, this function is universal for curvature-driven growth. It is argued that comparison of scaling functions can be a useful method for distinguishing between universality classes of growth processes. © 1994 The American Physical Society.
引用
收藏
页码:3589 / 3593
页数:5
相关论文
共 23 条
[1]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[2]   PROBABILITY DENSITY-FUNCTIONS FOR COLLECTIVE COORDINATES IN ISING-LIKE SYSTEMS [J].
BRUCE, AD .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (25) :3667-3688
[3]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[4]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[5]  
Feller W., 2008, INTRO PROBABILITY TH
[6]  
Feynman R. P., 1964, QUANTUM MECH PATH IN
[7]  
FOLTIN G, 1994, PHYS REV E, V50, P639
[8]  
Gardiner C. W., 1983, HDB STOCHASTIC METHO
[9]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892