FACTORIZATION IS NOT UNIQUE FOR HIGHER DIMENSIONAL KNOTS

被引:9
作者
BAYER, E [1 ]
机构
[1] UNIV MUNSTER,INST MATH,D-4400 MUNSTER,FED REP GER
关键词
D O I
10.1007/BF02566708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:583 / 592
页数:10
相关论文
共 11 条
[1]   FINITENESS OF NUMBER OF ISOMORPHISM CLASSES OF INTEGRAL ISOMETRIC STRUCTURES [J].
BAYER, E ;
MICHEL, F .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (03) :378-396
[2]   FACTORIZATION IS NOT UNIQUE FOR 3-KNOTS [J].
KEARTON, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (03) :451-452
[3]  
KEARTON C, FACTORISATION KNOTS
[4]   CLASSIFICATION OF SIMPLE KNOTS BY LEVINE PAIRINGS [J].
KOJIMA, S .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (03) :356-367
[5]  
LANG S, ALGEBRAIC NUMBER THE
[6]  
Lang S., 1978, CYCLOTOMIC FIELDS
[7]  
LEVINE J, 1977, T AM MATH SOC, V229, P1
[8]   AN ALGEBRAIC CLASSIFICATION OF SOME KNOTS OF CODIMENSION 2 [J].
LEVINE, J .
COMMENTARII MATHEMATICI HELVETICI, 1970, 45 (02) :185-&
[9]   HOMOLOGY OF GROUP SYSTEMS WITH APPLICATIONS TO KNOT THEORY [J].
TROTTER, HF .
ANNALS OF MATHEMATICS, 1962, 76 (03) :464-&
[10]  
[No title captured]