HARMONIC-ANALYSIS IN BANACH MODULES .1. GENERAL-PROPERTIES

被引:0
作者
DATRY, C [1 ]
MURAZ, G [1 ]
机构
[1] UNIV GRENOBLE 1,INST FOURNIER,GRENOBLE,FRANCE
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 1995年 / 119卷 / 04期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a first part, we study for a Banach space the compatibility between the action of a locally compact abelian group and the one of its algebra L(1)(G). Such a space is called a L(1)-module with a compatible G-action. The elements of the module on which G acts continuously play an important role and their characterization is the subject of the second part. We obtain, in particular, a generalization of a result by M. and R. P. BOAS to uniformly continuous fonctions. The last part deals with the Beurling spectrum The space of the elements with a void spectrum admits generally a topological supplement. This result will be very useful for the sudy of the almost-periodic elements and the development on an ''ergodic'' Fourier transform, both subjects being a sequel of this work. We give an application of the spectral theory to problems of automatic continuity, completing B. E. JOHNSON's results.
引用
收藏
页码:299 / 337
页数:39
相关论文
共 37 条
[1]  
Benedetto J. J, 1975, SPECTRAL SYNTHESIS
[2]  
BESICOVITCH AS, 1954, PERIODIC FUNCTIONS
[3]  
BOURBAKI N, 1963, INTEGRATION, pCH7
[4]  
Bourbaki N., 1965, INTEGRATION
[5]  
Bourbaki N., 1967, THEORIES SPECTRALES
[6]  
Cigler J., 1969, INDAG MATH, V31, P273, DOI DOI 10.1016/1385-7258(69)90015-8
[7]  
CIGLER J, 1979, LECTURE NOTES PURE A
[8]  
COMISKY CV, 1971, INDAG MATH, V33, P32
[9]  
DATRY C, IN PRESS B SCI MATH
[10]   HARMONIC-ANALYSIS FOR OPERATORS .1. FORMAL PROPERTIES [J].
DELEEUW, K .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (04) :593-606