ISOPERIMETRIC-INEQUALITIES FOR IMMERSED CLOSED SPHERICAL CURVES

被引:15
作者
WEINER, JL
机构
关键词
IMMERSED SPHERICAL CURVE; ISOPERIMETRIC INEQUALITY; LENGTH; TOTAL CURVATURE;
D O I
10.2307/2159887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha:S1 --> S2 be a C2 immersion with length L and total curvature K. If alpha is regularly homotopic to a circle traversed once then L2 + K2 greater-than-or-equal-to 4pi2 with equality if and only if a is a circle traversed once. If alpha has nonnegative geodesic curvature and multiple points then L + K greater-than-or-equal-to 4pi with equality if and only if a is a great circle traversed twice.
引用
收藏
页码:501 / 506
页数:6
相关论文
共 8 条
[2]   ON THE DIFFERENTIAL GEOMETRY OF CLOSED SPACE CURVES [J].
FENCHEL, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (01) :44-54
[3]  
LITTLE TA, 1970, J DIFFER GEOM, V4, P339
[4]  
Milnor J., 1953, MATH SCAND, V1, P289
[5]   HOPF TORI IN S3 [J].
PINKALL, U .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :379-386
[6]  
Smale S., 1956, T AM MATH SOC, V87, P492, DOI 10.1090/S0002-9947-1958-0094807-0
[7]  
TOTARO B, 1990, INT J MATH, V0001, P00109, DOI DOI 10.1142/S0129167X90000083
[8]  
Weiner J., 1991, INT J MATH, V2, P761