PROGRESS IN LATTICE FIELD-THEORY ALGORITHMS

被引:12
作者
KENNEDY, AD [1 ]
机构
[1] FLORIDA STATE UNIV,SUPERCOMP COMPUTAT RES INST,TALLAHASSEE,FL 32306
关键词
D O I
10.1016/0920-5632(93)90180-E
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
I present a summary of recent algorithmic developments for lattice field theories. In particular I give a pedagogical introduction to the new Multicanonical algorithm, and discuss the relation between the Hybrid Overrelaxation and Hybrid Monte Carlo algorithms. I also attempt tc clarify the role of the dynamical critical exponent z and its connection with ''computational cost.''
引用
收藏
页码:96 / 107
页数:12
相关论文
共 78 条
[1]   OVERRELAXATION ALGORITHMS FOR LATTICE FIELD-THEORIES [J].
ADLER, SL .
PHYSICAL REVIEW D, 1988, 37 (02) :458-471
[2]   OVER-RELAXATION METHOD FOR THE MONTE-CARLO EVALUATION OF THE PARTITION-FUNCTION FOR MULTIQUADRATIC ACTIONS [J].
ADLER, SL .
PHYSICAL REVIEW D, 1981, 23 (12) :2901-2904
[3]   INVESTIGATION OF THE 2-DIMENSIONAL O(3) MODEL USING THE OVERRELAXATION ALGORITHM [J].
APOSTOLAKIS, J ;
BAILLIE, CF ;
FOX, GC .
PHYSICAL REVIEW D, 1991, 43 (08) :2687-2693
[4]  
Apostolakis J., 1991, Nuclear Physics B, Proceedings Supplements, V20, P678, DOI 10.1016/0920-5632(91)90999-U
[5]   POSSIBLE BARRIER AT Z-APPROXIMATE-TO-1 FOR LOCAL ALGORITHMS [J].
BATHAS, G ;
NEUBERGER, H .
PHYSICAL REVIEW D, 1992, 45 (10) :3880-3883
[6]   FERMION SIMULATIONS USING PARALLEL TRANSPORTED MULTIGRID [J].
BENAV, R ;
BRANDT, A ;
HARMATZ, M ;
KATZNELSON, E ;
LAUWERS, PG ;
SOLOMON, S ;
WOLOWESKY, K .
PHYSICS LETTERS B, 1991, 253 (1-2) :185-192
[7]  
BERG B, 1992, FSUHEP920817 TECHN R
[8]  
BERG BA, 1991, BITP9121 U BIEL TECH
[9]  
BERG BA, 1992, FSUSCRI92121 TECHN R
[10]  
BERG BA, 1992, FSUSCRI9258 TECHN RE