CONFIRMATION OF THE AFRAIMOVICH-SHILNIKOV TORUS-BREAKDOWN THEOREM VIA A TORUS CIRCUIT

被引:31
作者
ANISHCHENKO, VS [1 ]
SAFONOVA, MA [1 ]
CHUA, LO [1 ]
机构
[1] UNIV CALIF BERKELEY,ELECTR RES LAB,BERKELEY,CA 94720
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1993年 / 40卷 / 11期
关键词
D O I
10.1109/81.251815
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Afraimovich-Shilnikov theorem on 2-D torus breakdown is formulated and used to carry out a detailed numerical investigation of the bifurcation routes from the torus to chaos in a third-order torus circuit. Three scenarios of transition to chaos due to torus breakdown take place in this circuit in complete agreement with the theorem: 1) Period-doubling bifurcations of the phase-locked limit cycles 2) saddle-node bifurcation in the presence of a homoclinic structure 3) soft transition due to the loss of torus smoothness.
引用
收藏
页码:792 / 800
页数:9
相关论文
共 27 条
[1]  
Afraimovich V. S., 1983, METHODS QUALITATIVE, P3
[2]  
Anishchenko, 1989, DYNAMICAL CHAOS PHYS, V22
[3]  
Anishchenko V. S., 1987, DYNAMICAL CHAOS BASI, V14
[4]  
ANISHCHENKO VS, 1987, RADIOTEKH ELEKTRON+, V32, P1207
[5]   NOISE-INDUCED CHAOS IN A SYSTEM WITH HOMOCLINIC POINTS [J].
ANISHCHENKO, VS ;
HERZEL, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (07) :317-318
[6]  
ANISHCHENKO VS, 1986, PISMA ZH TEKH FIZ+, V12, P740
[7]  
ANISHCHENKO VS, 1986, J TECHN PHYS, V56, P225
[8]  
[Anonymous], 1986, COLLAPSE TORI GENESI
[9]  
ARNOLD VI, 1986, SUMMARY SCI TECHNICS, V5
[10]  
CHUA LO, 1993, IEICE T FUND ELECTR, VE76A, P704