A New Dual Hardy-Hilbert's Inequality with some Parameters and its Reverse

被引:0
作者
Zhong, Wuyi [1 ]
机构
[1] Guangdong Inst Educ, Dept Math, Guangzhou 510303, Guangdong, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2009年 / 49卷 / 03期
关键词
Euler-Maclaurin summation formula; dual Hardy-Hilbert's inequality; reverse form; best constant factor; equivalent form;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the improved Euler-Maclaurin summation formula and estimating the weight coefficients in this paper, a new dual Hardy-Hilbert's inequality and its reverse form are obtained, which are all with two pairs of conjugate exponents (p, q), (r, s) and a independent parameter A. In addition, some equivalent forms of the inequalities are considered. We also prove that the constant factors in the new inequalities are all the best possible. As a particular case of our results, we obtain the reverse form of a famous Hardy-Hilbert's inequality.
引用
收藏
页码:493 / 506
页数:14
相关论文
共 12 条
  • [1] Brnetic I, 2004, MATH INEQUAL APPL, V7, P217
  • [2] Gao MZ, 1998, P AM MATH SOC, V126, P751
  • [3] Hardy G. H., 1952, MATH GAZ
  • [4] Kuang J., 2004, APPL INEQUALITIES, P5
  • [5] Mintrinovic D. S., 1991, INEQUALITIES INVOLVI
  • [6] Yang B., 1997, ACTA SCI NAT UNIV S, V36, P30
  • [7] Yang BC, 2002, MATH INEQUAL APPL, V5, P197
  • [8] [Yang Bicheng 杨必成], 2006, [数学进展, Advances in Mathematics], V35, P102
  • [9] Zhao C., 2001, J MATH ANAL APPL, V245, P248
  • [10] ZHONG W, 2007, INT J PURE APPL MATH, V36, P353