ELECTRON EIGENSTATES IN UNIFORM MAGNETIC FIELDS

被引:25
作者
RENSINK, ME
机构
[1] Lawrence Radiation Laboratory, University of California, Livermore
关键词
D O I
10.1119/1.1975922
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The purpose of this paper is to show in detail how the electron energy-eigenvalue spectrum changes from the form [formula omitted] in a finite magnetic field to the free-particle form [formula omitted] in zero magnetic field. We consider an electron confined to a “box” of finite volume and calculate the exact eigenstates for arbitrary magnetic field strengths. When the electron cyclotron radius [formula omitted] is small compared to the dimensions of the box, we get the spectrum [formula omitted], and when it is large we get [formula omitted]. The key to this demonstration is a mathematical identity which relates the magnetic eigenfunctions to the free-particle eigenfunctions. Magnetic corrections to the spectrums [formula omitted] are obtained without the use of quantum mechanical perturbation theory. © 1969, American Association of Physics Teachers. All rights reserved.
引用
收藏
页码:900 / &
相关论文
共 14 条
[1]  
KITTEL C, 1963, QUANTUM THEORY SOLID, P219
[2]  
Landau L.D., 1958, QUANTUM MECHANICS, P133
[3]  
LANDAU LD, 1958, QUANTUM MECHANICS, P475
[4]  
LANDAU LD, 1965, QUANTUM MECHANICS NO, P426
[5]  
MARGENAU H, 1956, MATHEMATICS PHYSICS, P117
[6]  
MARGENAU H, 1956, MATHEMATICS PHYSICS, P74
[7]  
MORSE PM, 1953, METHODS THEORETICAL, V1, P551
[8]  
PEIERLS RE, 1955, QUANTUM THEORY SOLID, P146
[9]  
Slater L. J., 1960, CONFLUENT HYPERGEOME
[10]  
SLATER LJ, 1960, CONFLUENT HYPERGEOME, P100