INFIMA OF HYPERSPACE TOPOLOGIES

被引:7
作者
COSTANTINI, C [1 ]
LEVI, S [1 ]
PELANT, J [1 ]
机构
[1] ACAD SCI CZECH REPUBL, DEPT MATH, CR-11567 PRAGUE 1, CZECH REPUBLIC
关键词
D O I
10.1112/S0025579300011360
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study infima of families of topologies on the hyperspace of a metrizable space. We prove that Kuratowski convergence is the infimum, in the lattice of convergences, of all Wijsman topologies and that the cocompact topology on a metric space which is complete for a metric d is the infimum of the upper Wijsman topologies arising from metrics that are uniformly equivalent to d.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 19 条
  • [1] Atsuji M., 1958, PAC J MATH, V8, P11, DOI DOI 10.2140/PJM.1958.8.11
  • [2] METRIC-SPACES WITH NICE CLOSED BALLS AND DISTANCE FUNCTIONS FOR CLOSED-SETS
    BEER, G
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1987, 35 (01) : 81 - 96
  • [3] DISTANCE FUNCTIONALS AND SUPREMA OF HYPERSPACE TOPOLOGIES
    BEER, G
    LECHICKI, A
    LEVI, S
    NAIMPALLY, S
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 162 : 367 - 381
  • [4] BEER GJ, IN PRESS NONLINEAR A
  • [5] CHRISTENSEN J.P.R., 1974, TOPOLOGY BOREL STRUC
  • [6] COSTANTINI C, 1995, P LOND MATH SOC, V70, P441
  • [7] COSTANTINI C, 1993, SET-VALUED ANAL, V1, P141
  • [8] DOLECKI S, 1991, CR ACAD SCI I-MATH, V312, P923
  • [9] CYRTOLOGIES OF CONVERGENCES .1.
    DOLECKI, S
    GRECO, GH
    [J]. MATHEMATISCHE NACHRICHTEN, 1986, 126 : 327 - 348
  • [10] Dugundji J., 1966, TOPOLOGY