ON THE PERIODIC LOTKA-VOLTERRA COMPETITIVE SYSTEMS WITH DISTRIBUTED TIME DELAYS AND FEEDBACK CONTROLS

被引:0
作者
Muhammadhaji, Ahmadjan [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2016年
关键词
Competitive system; Continuation theorem; Positive periodic solution; Distributed time delay; Feed-back control;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two classes of periodic n-species Lotka-Volterra competitive systems with distributed time delays and feedback controls are discussed. Based on the continuation theorem of the coincidence degree theory, some new sufficient conditions on the existence of positive periodic solutions are established.
引用
收藏
页数:23
相关论文
共 41 条
[3]   Positive periodic solutions of neutral Lotka-Volterra system with feedback control [J].
Chen, FD .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (03) :1279-1302
[4]   On the periodic solutions of periodic multi-species Kolmogorov type competitive system with delays and feedback controls [J].
Chen, Fengde .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) :366-373
[5]  
Deimling K., 1988, NONLINEAR FUNCTIONAL
[6]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]   Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments [J].
Fan, M ;
Wang, K ;
Jian, DQ .
MATHEMATICAL BIOSCIENCES, 1999, 160 (01) :47-61
[8]   Existence of multiple periodic solutions for delay Lotka-Volterra competition patch systems with harvesting [J].
Fang, Hui ;
Xiao, Yongfeng .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (02) :1086-1096
[9]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[10]  
Gopalsamy K., 1992, STABILITY OSCILLATIO, V74