INHIBITORS OF HUMAN-IMMUNODEFICIENCY-VIRUS INTEGRASE

被引:273
作者
FESEN, MR [1 ]
KOHN, KW [1 ]
LETEURTRE, F [1 ]
POMMIER, Y [1 ]
机构
[1] NCI, DIV CANC TREATMENT,MOLEC PHARMACOL LAB, DEV THERAPEUT PROGRAM,BLDG 37, ROOM 5C25, BETHESDA, MD 20892 USA
关键词
RETROVIRUS; AIDS; TOPOISOMERASE; ZINC FINGER;
D O I
10.1073/pnas.90.6.2399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In an effort to further extend the number of targets for development of antiretroviral agents, we have used an in vitro integrase assay to investigate a variety of chemicals, including topoisomerase inhibitors, antimalarial agents, DNA binders, naphthoquinones, the flavone quercetin, and caffeic acid phenethyl ester as potential human immunodeficiency virus type 1 integrase inhibitors. Our results show that although several topoisomerase inhibitors-including doxorubicin, mitoxantrone, ellipticines, and quercetin-are potent integrase inhibitors, other topoisomerase inhibitors-such as amsacrine, etoposide, teniposide, and camptothecin-are inactive. Other intercalators, such as chloroquine and the bifunctional intercalator ditercalinium, are also active. However, DNA binding does not correlate closely with integrase inhibition. The intercalator 9-aminoacridine and the polyamine DNA minor-groove binders spermine, spermidine, and distamycin have no effect, whereas the non-DNA binders primaquine, 5,8-dihydroxy-1,4-naphthoquinone, and caffeic acid phenethyl ester inhibit the integrase. Caffeic acid phenethyl ester was the only compound that inhibited the integration step to a substantially greater degree than the initial cleavage step of the enzyme. A model of 5,8-dihydroxy-1,4-naphthoquinone interaction with the zinc ringer region of the retroviral integrase protein is proposed.
引用
收藏
页码:2399 / 2403
页数:5
相关论文
共 37 条
[1]   POTENTIAL ANTI-TUMOR AGENTS .34. QUANTITATIVE RELATIONSHIPS BETWEEN DNA-BINDING AND MOLECULAR-STRUCTURE FOR 9-ANILINOACRIDINES SUBSTITUTED IN THE ANILINO RING [J].
BAGULEY, BC ;
DENNY, WA ;
ATWELL, GJ ;
CAIN, BF .
JOURNAL OF MEDICINAL CHEMISTRY, 1981, 24 (02) :170-177
[2]  
BROWN PO, 1990, CURR TOP MICROBIOL, V157, P19
[3]  
BURKE CJ, 1992, J BIOL CHEM, V267, P9639
[4]   RETROVIRAL DNA INTEGRATION DIRECTED BY HIV INTEGRATION PROTEIN INVITRO [J].
BUSHMAN, FD ;
FUJIWARA, T ;
CRAIGIE, R .
SCIENCE, 1990, 249 (4976) :1555-1558
[5]   A RAPID INVITRO ASSAY FOR HIV DNA INTEGRATION [J].
CRAIGIE, R ;
MIZUUCHI, K ;
BUSHMAN, FD ;
ENGELMAN, A .
NUCLEIC ACIDS RESEARCH, 1991, 19 (10) :2729-2734
[6]   INHIBITION OF HIV-1 INTEGRATION PROTEIN BY AURINTRICARBOXYLIC ACID MONOMERS, MONOMER ANALOGS, AND POLYMER FRACTIONS [J].
CUSHMAN, M ;
SHERMAN, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1992, 185 (01) :85-90
[7]   IDENTIFICATION OF CONSERVED AMINO-ACID-RESIDUES CRITICAL FOR HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE FUNCTION-INVITRO [J].
ENGELMAN, A ;
CRAIGIE, R .
JOURNAL OF VIROLOGY, 1992, 66 (11) :6361-6369
[8]   HIV-1 DNA INTEGRATION - MECHANISM OF VIRAL-DNA CLEAVAGE AND DNA STRAND TRANSFER [J].
ENGELMAN, A ;
MIZUUCHI, K ;
CRAIGIE, R .
CELL, 1991, 67 (06) :1211-1221
[9]  
GLAZER RI, 1982, CANCER RES, V42, P117
[10]   PREFERENTIAL CYTO-TOXICITY ON TUMOR-CELLS BY CAFFEIC ACID PHENETHYL ESTER ISOLATED FROM PROPOLIS [J].
GRUNBERGER, D ;
BANERJEE, R ;
EISINGER, K ;
OLTZ, EM ;
EFROS, L ;
CALDWELL, M ;
ESTEVEZ, V ;
NAKANISHI, K .
EXPERIENTIA, 1988, 44 (03) :230-232