HIGH-ORDER ADAPTIVE METHODS FOR PARABOLIC-SYSTEMS

被引:26
作者
ADJERID, S [1 ]
FLAHERTY, JE [1 ]
MOORE, PK [1 ]
WANG, YJ [1 ]
机构
[1] RENSSELAER POLYTECH INST,SCI COMPUTAT RES CTR,TROY,NY 12180
来源
PHYSICA D | 1992年 / 60卷 / 1-4期
关键词
D O I
10.1016/0167-2789(92)90229-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the adaptive solution of parabolic partial differential systems in one and two space dimensions by finite element procedures that automatically refine and coarsen computational meshes, vary the degree of the piecewise polynomial basis and, in one dimension, move the computational mesh. Two-dimensional meshes of triangular, quadrilateral, or a mixture of triangular and quadrilateral elements are generated using a finite quadtree procedure that is also used for data management. A posteriori estimates, used to control adaptive enrichment, are generated from the hierarchical polynomial basis. Temporal integration, within a method-of-lines framework, uses either backward difference methods or a variant of the singly implicit Runge-Kutta (SIRK) methods. A high-level user interface facilitates use of the adaptive software.
引用
收藏
页码:94 / 111
页数:18
相关论文
共 31 条
[1]  
Abromowitz M., 1965, HDB MATH FUNCTIONS
[2]   A MOVING FINITE-ELEMENT METHOD WITH ERROR ESTIMATION AND REFINEMENT FOR ONE-DIMENSIONAL TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :778-796
[3]  
ADJERID S, 1991, UNPUB
[4]  
ADJERID S, 1991, 911 RENSS POL I DEPT
[5]  
ADJERID S, 1986, COMPUT METHODS APPL, V56, P3
[6]   AN ADAPTIVE MESH-MOVING AND LOCAL REFINEMENT METHOD FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ARNEY, DC ;
FLAHERTY, JE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (01) :48-71
[7]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[8]  
BABUSKA I, 1988, COMMUNICATION
[9]  
Babuska I., 1986, COMPUT MECH, P21, DOI DOI 10.1007/BF00298636
[10]   ROBUST, GEOMETRICALLY BASED, AUTOMATIC TWO-DIMENSIONAL MESH GENERATION [J].
BAEHMANN, PL ;
WITTCHEN, SL ;
SHEPHARD, MS ;
GRICE, KR ;
YERRY, MA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (06) :1043-1078