CRYPTOGRAPHY BASED ON CURVES (ELLIPTIC AND HYPERELLIPTIC)

被引:0
作者
Durcheva, Mariana [1 ]
机构
[1] Tech Univ Sofia, Fac Appl Math & Informat, Dept Algebra & Geometry, Sofia, Bulgaria
来源
INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY | 2015年 / 7卷 / 01期
关键词
elliptic curve; hyperelliptic curve; cryptographic protocol;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present an ElGamal-like cryptosystem, based on elliptic and hyperelliptic curves, in which we combine the advantages of both curves. The main idea is to use the isogenies between the Weil restriction of the elliptic curve and the Jacobian of the genus-2 hyperelliptic curve.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 15 条
  • [1] Bos J., 2013, PREPRINT
  • [2] Bos JW, 2013, LECT NOTES COMPUT SC, V7881, P194, DOI 10.1007/978-3-642-38348-9_12
  • [3] CANTOR DG, 1987, MATH COMPUT, V48, P95, DOI 10.1090/S0025-5718-1987-0866101-0
  • [4] Cohen Henri., 2006, HDB ELLIPTIC HYPEREL
  • [5] Fulton W., 1969, MATH LECT NOTE SERIE
  • [6] GALBRAITH SD, 2004, LMS J COMPUT MATH, V7, P201
  • [7] Hoffstein J., 2008, INTRO MATH CRYPTOGRA
  • [8] Elliptic curve cryptography: The serpentine course of a paradigm shift
    Koblitz, Ann Hibner
    Koblitz, Neal
    Menezes, Alfred
    [J]. JOURNAL OF NUMBER THEORY, 2011, 131 (05) : 781 - 814
  • [9] Koblitz N., 1989, Journal of Cryptology, V1, P139, DOI 10.1007/BF02252872
  • [10] Koblitz N., 1987, J MATH COMPUTATION, V48, P203, DOI DOI 10.1090/S0025-5718-1987-0866109-5