THE ASYMPTOTIC MESH INDEPENDENCE PRINCIPLE OF NEWTON'S METHOD UNDER WEAKER CONDITIONS

被引:0
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, Karnataka, India
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2015年 / 14卷 / 01期
关键词
mesh independence principle; Newton's method; Holder continuity; affine invariance;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new asymptotic mesh independence principle of Newton's method for discretized nonlinear operator equations. Our hypotheses are weaker than in earlier studies such as [1], [8]-[12]. This way we extend the applicability of the mesh independence principle which asserts that the behavior of the discretized version is asymptotically the same as that of the original iteration and consequently, the number of steps required by the two processes to converge within a given tolerance is essentially the same. The results apply to solve a boundary value problem that cannot be solved with the earlier hypotheses given in [12].
引用
收藏
页码:29 / 45
页数:17
相关论文
共 12 条
[1]   A MESH-INDEPENDENCE PRINCIPLE FOR OPERATOR-EQUATIONS AND THEIR DISCRETIZATIONS [J].
ALLGOWER, EL ;
BOHMER, K ;
POTRA, FA ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (01) :160-169
[2]  
Argyros I. K., 2000, MATH SCI RES HOT LIN, V4, P51
[3]  
Argyros I.K., 2008, CONVERGENCE APPL NEW
[4]  
Argyros I. K., 2001, ANN U SCI BUDAPEST S, V20, P31
[5]   ON A MESH-INDEPENDENCE PRINCIPLE FOR OPERATOR-EQUATIONS AND THE SECANT METHOD [J].
ARGYROS, IK .
ACTA MATHEMATICA HUNGARICA, 1992, 60 (1-2) :7-19
[7]  
Argyros IK., 2013, COMPUTATIONAL METHOD
[8]   AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS [J].
DEUFLHARD, P ;
HEINDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :1-10
[9]   ASYMPTOTIC MESH INDEPENDENCE OF NEWTON-GALERKIN METHODS VIA A REFINED MYSOVSKII THEOREM [J].
DEUFLHARD, P ;
POTRA, FA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (05) :1395-1412
[10]  
Kelley C.T., 1991, J INTEGRAL EQUAT, V3, P549, DOI DOI 10.1216/jiea/1181075649