A SOLUTION OF GALERKIN TYPE IN THE THEORY OF THERMOELASTIC MATERIALS WITH VOIDS

被引:18
作者
CIARLETTA, M
机构
[1] Istituto di Fisica Matematica ed Informatica Facottà di Ingegneria, Università di Salerno, Salerno
关键词
10;
D O I
10.1080/01495739108927076
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article is concerned with the dynamic theory of thermoelastic materials with voids. First, a representation theorem of Galerkin type is established. Then, the case of steady vibrations is considered. The representation theorem is used to study the effects of a concentrated heat source and a concentrated extrinsic equilibrated body force in a body occupying the entire space.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 10 条
  • [1] Nunziato J.W., Co win S.C., A Nonlinear Theory of Elastic Materials with Voids, Arch. Rational Mech. Anal., 72, pp. 175-201, (1979)
  • [2] Cowin S.C., Nunziato J.W., Linear Elastic Materials with Voids, J. Elasticity, 13, pp. 125-147, (1983)
  • [3] Iesan D., A Theory of Thermoelastic Materials with Voids, Acta Mech., 60, pp. 67-89, (1986)
  • [4] Ciarletta M., Scarpetta E., Some Results in a Generalized Thermodynamic Theory for Elastic Materials with Voids, Rev. Roum. Sci. Tech.-Mec. Appl., 34, 2, pp. 113-119, (1989)
  • [5] Nowacki W., Green Functions for the Thermoelastic Medium, Bull. Acad. Polon. Sci., Ser. Sci. Tech., 12, pp. 465-472, (1964)
  • [6] Chandrasekharaiah D.S., Cowin S.C., Unified Complete Solutions for the Theories of Ther-moelasticity and Poroelasticity, J. Elasticity, 21, pp. 121-126, (1989)
  • [7] Courant R., Partial Differential Equations, 2, (1962)
  • [8] Nunziato J.W., Walsh E.K., Small-Amplitude Wave Behavior in One-Dimensional Granular Materials, J. Appl. Mech., 44, pp. 559-564, (1977)
  • [9] Puri P., Cowin S.C., Plane Waves in Linear Elastic Materials with Voids, J. Elasticity, 15, pp. 167-178, (1985)
  • [10] Chandrasekharaiah D.S., Plane Waves in a Rotating Elastic Solid with Voids, Int. J. Eng. Sci., 25, pp. 591-596, (1987)