EXACT SOLUTION IN A SCALE INVARIANT MODEL WITH VANISHING COSMOLOGICAL CONSTANT

被引:0
|
作者
KAO, WF
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a special scale invariant effective theory with vanishing cosmological constant. We show that, in this theory, the spatial-independence of the inflation is implied by the equation of motion incorporated with the Robertson-Walker metric. Furthermore, we find that this theory can be solved exactly for k = O Robertson-Walker spaces. We also find almost exact solution in k not-equal 0 spaces.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Cosmological constant in scale-invariant theories
    Foot, Robert
    Kobakhidze, Archil
    Volkas, Raymond R.
    PHYSICAL REVIEW D, 2011, 84 (07):
  • [2] ON THE VANISHING OF THE COSMOLOGICAL CONSTANT
    DERUELLE, N
    MADORE, J
    PHYSICS LETTERS A, 1986, 114 (04) : 185 - 190
  • [3] EXACT SOLUTION FOR VACUUM BIANCHI TYPE-III MODEL WITH A COSMOLOGICAL CONSTANT
    MOUSSIAUX, A
    TOMBAL, P
    DEMARET, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (08): : L277 - L280
  • [4] A strategy for a vanishing cosmological constant in the presence of scale invariance breaking
    Adler, SL
    GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (11) : 1357 - 1362
  • [5] A Strategy for a Vanishing Cosmological Constant in the Presence of Scale Invariance Breaking
    Stephen L. Adler
    General Relativity and Gravitation, 1997, 29 : 1357 - 1362
  • [7] Electroweak scale invariant models with small cosmological constant
    Foot, Robert
    Kobakhidze, Archil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (21):
  • [8] A symmetry for the vanishing cosmological constant
    Erdem, Recai
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) : 6945 - 6950
  • [9] Exact solution in a string cosmological model
    Aref'eva, I. Ya.
    Vernov, S. Yu.
    Koshelev, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 148 (01) : 895 - 909
  • [10] Exact solution in a string cosmological model
    I. Ya. Aref’eva
    S. Yu. Vernov
    A. S. Koshelev
    Theoretical and Mathematical Physics, 2006, 148 : 895 - 909