Parameter estimation of tuberculosis transmission model using Ensemble Kalman filter across Indian states and union territories

被引:11
|
作者
Narula, Pankaj [1 ]
Piratla, Vihari [2 ]
Bansal, Ankit [3 ]
Azad, Sarita [1 ]
Lio, Pietro [4 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Bas Sci, Mandi 175001, Himachal Prades, India
[2] Indian Inst Technol Mandi, Sch Comp & Elect Engn, Mandi 175001, Himachal Prades, India
[3] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttarakhand, India
[4] Univ Cambridge, Comp Lab, William Gates Bldg,15 JJ Thomson Ave, Cambridge CB3 0FD, England
关键词
Tuberculosis; India; Infection;
D O I
10.1016/j.idh.2016.11.001
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Tuberculosis (TB) is one of the main causes of mortality on the globe. Besides the full implementation of Revised National Tuberculosis Control Programme (RNTCP), TB continues to be a major public health problem in India. Methods: In the present study, parameters of a TB model are estimated using Ensemble Kalman filter (EnKf) approach. Infection rate and fraction of smear positive cases of TB are estimated in context of India. Results and Conclusions: Results reveal that the infection rate is highest in Manipur and the ratio of smear positive cases is highest in Pondicherry. The infection rate of TB in Manipur is found to be 2.57 per quarter for the period 2006-2011. (C) 2016 Australasian College for Infection Prevention and Control. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 50 条
  • [41] Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter
    Rui-xun Lai
    Hong-wei Fang
    Guo-jian He
    Xin Yu
    Ming Yang
    Ming Wang
    Journal of Hydrodynamics, 2013, 25 : 564 - 571
  • [42] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [43] Shape and distributed parameter estimation for history matching using a modified Ensemble Kalman filter and level sets
    Villegas, Rossmary
    Etienam, Clement
    Dorn, Oliver
    Babaei, Masoud
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2020, 28 (02) : 175 - 195
  • [44] Estimation of geothermal reservoir properties using the Ensemble Kalman Filter
    Marquart, Gabriele
    Vogt, Christian
    Klein, Christoph
    Widera, Andre
    EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2013, EGUDIVISION ENERGY, RESOURCES & THE ENVIRONMENT, ERE, 2013, 40 : 117 - 126
  • [45] Position Estimation of Touristant ASV Using Ensemble Kalman Filter
    Nurhadi, Hendro
    Herlambang, Teguh
    Adzkiya, Dieky
    INNOVATIVE SCIENCE AND TECHNOLOGY IN MECHANICAL ENGINEERING FOR INDUSTRY 4.0, 2019, 2187
  • [46] Geospatial state space estimation using an ensemble Kalman Filter
    Sallis, Philip
    Hernandez, Sergio
    International Journal of Simulation: Systems, Science and Technology, 2010, 11 (06): : 56 - 60
  • [47] Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
    Domzalski, Mariusz
    Kowalczuk, Zdzislaw
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 736 - 740
  • [48] A Parameter-Estimation Method Using the Ensemble Kalman Filter for Flow and Thermal Simulation in an Engine Compartment
    Kusano, Kazuya
    Yamakawa, Hironobu
    Hano, Kenich
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2018, 140 (12):
  • [49] State estimation of tidal hydrodynamics using ensemble Kalman filter
    Tamura, Hitoshi
    Bacopoulos, Peter
    Wang, Dingbao
    Hagen, Scott C.
    Kubatko, Ethan J.
    ADVANCES IN WATER RESOURCES, 2014, 63 : 45 - 56
  • [50] Estimation of spray flow characteristics using ensemble Kalman filter
    Takahashi, Shun
    Misaka, Takashi
    Nara, Shotaro
    Sugiyama, Naoki
    Nohara, Tetsuo
    Kawamoto, Yuki
    Kuramoto, Yuiki
    Obara, Akira
    Osada, Rina
    Kikuchi, Asuka
    Ochiai, Masayuki
    Osumi, Kazuo
    Ishikawa, Naoya
    FLOW MEASUREMENT AND INSTRUMENTATION, 2022, 88