Parameter estimation of tuberculosis transmission model using Ensemble Kalman filter across Indian states and union territories

被引:11
|
作者
Narula, Pankaj [1 ]
Piratla, Vihari [2 ]
Bansal, Ankit [3 ]
Azad, Sarita [1 ]
Lio, Pietro [4 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Bas Sci, Mandi 175001, Himachal Prades, India
[2] Indian Inst Technol Mandi, Sch Comp & Elect Engn, Mandi 175001, Himachal Prades, India
[3] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttarakhand, India
[4] Univ Cambridge, Comp Lab, William Gates Bldg,15 JJ Thomson Ave, Cambridge CB3 0FD, England
关键词
Tuberculosis; India; Infection;
D O I
10.1016/j.idh.2016.11.001
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Tuberculosis (TB) is one of the main causes of mortality on the globe. Besides the full implementation of Revised National Tuberculosis Control Programme (RNTCP), TB continues to be a major public health problem in India. Methods: In the present study, parameters of a TB model are estimated using Ensemble Kalman filter (EnKf) approach. Infection rate and fraction of smear positive cases of TB are estimated in context of India. Results and Conclusions: Results reveal that the infection rate is highest in Manipur and the ratio of smear positive cases is highest in Pondicherry. The infection rate of TB in Manipur is found to be 2.57 per quarter for the period 2006-2011. (C) 2016 Australasian College for Infection Prevention and Control. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 50 条
  • [1] Analyzing seasonality of tuberculosis across Indian states and union territories
    Narula P.
    Sihota P.
    Azad S.
    Lio P.
    Journal of Epidemiology and Global Health, 2015, 5 (4) : 337 - 346
  • [2] Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter
    Annan, JD
    Lunt, DJ
    Hargreaves, JC
    Valdes, PJ
    NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) : 363 - 371
  • [3] Groundwater parameter estimation using the ensemble Kalman filter with localization
    Nan, Tongchao
    Wu, Jichun
    HYDROGEOLOGY JOURNAL, 2011, 19 (03) : 547 - 561
  • [4] Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter
    Annan, JD
    Hargreaves, JC
    Edwards, NR
    Marsh, R
    OCEAN MODELLING, 2005, 8 (1-2) : 135 - 154
  • [5] Parameter optimization for CA model using ensemble Kalman filter
    Zhang, Yihan
    Qiao, Jigang
    Ai, Bin
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2013, 42 (01): : 123 - 130
  • [6] Rainfall estimation with TFR model using Ensemble Kalman filter
    Rohmah, Nabila Asyiqotur
    Apriliani, Erna
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2018, 974
  • [7] Identification of hydrological model parameter variation using ensemble Kalman filter
    Deng, Chao
    Liu, Pan
    Guo, Shenglian
    Li, Zejun
    Wang, Dingbao
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (12) : 4949 - 4961
  • [8] Dynamic State Estimation and Parameter Calibration of a DFIG Using the Ensemble Kalman Filter
    Fan, Rui
    Huang, Zhenyu
    Wang, Shaobu
    Diao, Ruisheng
    Meng, Da
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [9] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    WATER RESOURCES RESEARCH, 2009, 45
  • [10] Bayesian Melding Approach to Estimate the Reproduction Number for Tuberculosis Transmission in Indian States and Union Territories
    Narula, Pankaj
    Azad, Sarita
    Lio, Pietro
    ASIA-PACIFIC JOURNAL OF PUBLIC HEALTH, 2015, 27 (07) : 723 - 732