PASSAGE OF PROPERTY (aw) FROM TWO OPERATORS TO THEIR TENSOR PRODUCT

被引:0
作者
Rashid, M. H. M. [1 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math & Stat, POB 7, Al Karak, Jordan
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2018年 / 42卷 / 03期
关键词
Tensor Product; property (aw); perturbation; SVEP;
D O I
10.5937/KgJMath1803389R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach space operator S satisfies property (aw) if sigma(S) \ sigma(w) (S) = E-a(0)(S), where E-a(0)(S) is the set of all isolated point in the approximate point spectrum which are eigenvalues of finite multiplicity. Property (aw) does not transfer from operators A and B to their tensor product A circle times B, so we give necessary and/or sufficient conditions ensuring the passage of property (aw) from A and B to A circle times B. Perturbations by Riesz operators are considered.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 18 条
[1]  
Aiena P., 2004, FREDHOLM LOCAL SPECT
[2]   Property (w) for perturbations of polaroid operators [J].
Aiena, Pietro ;
Guillen, Jesus R. ;
Pena, Pedro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :1791-1802
[3]   Variations on Weyl's theorem [J].
Aiena, Pietro ;
Pena, Pedro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :566-579
[4]  
Berkani M, 2010, MAT VESTN, V62, P145
[5]  
Berkani M, 2009, MATH BOHEM, V134, P369
[6]   Browder-type Theorems and SVEP [J].
Berkani, Mohammed ;
Sarih, Mustapha ;
Zariouh, Hassan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (03) :399-409
[7]   SPECTRA OF TENSOR PRODUCTS OF OPERATORS [J].
BROWN, A ;
PEARCY, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (01) :162-&
[8]  
Duggal B. P., 2005, EXTRACTA MATH, V20, P203
[9]   WEYL'S THEOREM, TENSOR PRODUCTS AND MULTIPLICATION OPERATORS II [J].
Duggal, Bhaggy ;
Harte, Robin ;
Kim, An-Hyun .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :705-709
[10]   On the a-Browder and a-Weyl spectra of tensor products [J].
Duggal B.P. ;
Djordjević S.V. ;
Kubrusly C.S. .
Rendiconti del Circolo Matematico di Palermo, 2010, 59 (3) :473-481