On automorphisms of a distance-regular graph with intersection array {119,100,15; 1,20,105}

被引:1
作者
Makhnev, Alexandr Alekseevich [1 ]
Isakova, Mariana Malilovna [1 ,2 ]
机构
[1] NN Krasovsky Inst Math & Meckhan, Str S Kovalevskoy 16, Ekaterinburg 620990, Russia
[2] Kabardino Balkarian State Univ, St Chernyshevsky 175, Nalchik 360004, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2018年 / 15卷
关键词
distance-regular graph; automorphism;
D O I
10.17377/semi.2018.15.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study automorphisms of a hypothetical distance-regular graph with intersection array {119; 100; 15; 1; 20; 105}. It is proved that a vertex-transitive distance-regular graph with intersection array {119; 100; 15; 1; 20; 105} has solvable automorphism group.
引用
收藏
页码:198 / 204
页数:7
相关论文
共 6 条
[1]   Strongly regular graphs with non-trivial automorphisms [J].
Behbahani, Majid ;
Lam, Clement .
DISCRETE MATHEMATICS, 2011, 311 (2-3) :132-144
[2]  
Brouwer A. E., 1989, DISTANCE REGULAR GRA
[3]  
Cameron P. J., 1999, PERMUTATION GROUPS L, V45
[4]   On Automorphisms of Distance-Regular Graphs with Intersection Array {56,45,1;1,9,56} [J].
Gavrilyuk, A. L. ;
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2010, 81 (03) :439-442
[5]  
Makhnev AA, 2017, T I MAT MEKH URO RAN, V23, P182, DOI 10.21538/0134-4889-2017-23-3-182-190
[6]  
Zavarnitsine AV, 2009, SIB ELECTRON MATH RE, V6, P1