OPTIMAL FAMILIES OF TWO AND THREE-DIMENSIONAL LATTICE PACKINGS FROM POLYNOMIALS WITH INTEGER COEFFICIENTS

被引:0
作者
Flores, Andre Luiz [1 ]
Interlando, J. Carmelo [2 ]
Nunes Lopes, Jose Valter [3 ]
Da Nobrega Neto, Trajano Pires [4 ]
机构
[1] Univ Fed Alagoas, Dept Matemat, Arapiraca, AL, Brazil
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA USA
[3] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
[4] Univ Estadual Paulista, Sao Jose Do Rio Preto, SP, Brazil
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2009年 / 15卷 / 01期
关键词
lattices; sphere packings; center density; polynomials; geometry of numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from single-variable quadratic and cubic polynomials with integer coefficients, we construct families of optimal lattice packings of rank two and three in Euclidean space. Each family has infinitely many members.
引用
收藏
页码:45 / 51
页数:7
相关论文
empty
未找到相关数据