HOROSPHERICAL FLOWS ON HOMOGENEOUS SPACES OF FINITE VOLUME

被引:0
作者
STARKOV, AN
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1992年 / 73卷 / 01期
关键词
D O I
10.1070/SM1992v073n01ABEH002539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Horospherical flows are considered on homogeneous spaces of finite volume. An ergodic decomposition of such flows is constructed in explicit form, and it is proved that the horospherical orbits have constant dimension. A conjecture of Raghunathan is proved for the closure of the orbits of horospherical flows under the additional assumption that the homogeneous space is compact.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 9 条
[1]   ALMOST ALGEBRAIC LIE ALGEBRAS [J].
AUSLANDE.L ;
BREZIN, J .
JOURNAL OF ALGEBRA, 1968, 8 (03) :295-&
[2]   WEAK MIXING AND UNIQUE ERGODICITY ON HOMOGENEOUS SPACES [J].
BOWEN, R .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 23 (3-4) :267-273
[3]   ORBITS OF HOROSPHERICAL FLOWS [J].
DANI, SG .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :177-188
[4]   UNIQUE ERGODICITY OF FLOWS ON HOMOGENEOUS SPACES [J].
ELLIS, R ;
PERRIZO, W .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (2-3) :276-284
[5]  
Hedlund G.A., 1936, DUKE MATH J, V2, P530
[6]  
STARKOV AN, 1988, DOKL AKAD NAUK SSSR+, V301, P1328
[7]  
STARKOV AN, 1987, MAT SBORNIK, V134, P242
[8]  
[No title captured]
[9]  
[No title captured]